CONTENTS

Ogen: An Overlapping Grid Generator for Overture

William D. Henshaw ¹
CASC: Centre for Applied Scientific Computing²
Lawrence Livermore National Laboratory
Livermore, CA, 94551
henshaw@llnl.gov
http://www.llnl.gov/casc/people/henshaw
http://www.llnl.gov/casc/Overture

November 2, 2003

UCRL-MA-132237

Abstract:

We describe how to generate overlapping grids for use with Overture using the ogen program. The user must first generate Mappings to describe the geometry (a set of overlapping grids whose union covers the domain). The overlapping grid then is constructed using the Ogen grid generator. This latter step consists of determining how the different component grids interpolate from each other, and in removing grid points from holes in the domain, and removing unnecessary grid points in regions of excess overlap. This document includes a description of commands, presents a series of command files for generating various overlapping grids and describes the overlapping grid algorithm. The ogen program can also be used to build unstructured hybrid grids where the overlap is replaced by an unstructured grid.

Contents

1	Introduction	3
2	Commands	3
	2.1 Commands for ogen	3
	2.2 Commands when creating Mappings	3
3	Things you should know to make an overlapping grid	5
	3.1 Boundary conditions	5
	3.2 Share flag	
	3.3 Turning off the cutting of holes	6
	3.4 Turning off interpolation between grids	
	3.5 Implicit versus explicit interpolation	
4	Examples	8
	4.1 Square	8
	4.2 Stretched Annulus	
	4.3 Cylinder in a channel	

¹This work was partially supported by grant N00014-95-F-0067 from the Office of Naval Research

²Management prefers the spelling 'Center'

CONTENTS 2

	-,,	11
	4.5 Cylinder in a channel, fourth-order version	
	4.6 Cylinder in a channel, multigrid version4.7 Inlet-outlet	13
	4.8 Valve	19
	4.9 NACA airfoil	21
	4.10 Hybrid grid for the inlet-outlet	23
	4.11 Stretched cube	25
	4.12 Sphere in a box	26
	4.13 Sphere in a tube	28
	4.14 Intersecting pipes	30
	4.15 Body Of Revolution	32
	4.16 3D valve	34
	4.17 Adding new grids to an existing overlapping grid	36
	4.18 Incrementally adding grids to an overlapping grid	
	4.19 Other sample command files and grids	39
5	Mixed physical-interpolation boundaries, making a c-grid, h-grid or block-block grid	47
	5.1 Automatic mixed-boundary interpolation	47
	5.2 Manual specification of mixed-boundary interpolation points	47
	5.3 Spitting a grid for interpolation of a grid to itself	48
_	M INLOW IN A HICK	-1
6	Manual Hole Cutting and Phantom Hole Cutting	51
7	Trouble Shooting	52
	7.1 Failure of explicit interpolation	
	7.2 Tips	54
8	Adding user defined Mapping's	55
9	Overlapping Grid Generator: Ogen	57
-	9.1 Command descriptions	57
	9.1.1 Interactive updateOverlap	
	9.1.2 Non-interactive updateOverlap	
	9.1.3 Moving Grid updateOverlap	57
	9.2 Algorithm	
	9.3 Hole cutting algorithm	
	9.4 Finding exterior points by ray tracing	
	9.5 Adjusting grid points for the boundary mismatch problem	62
	9.6 Refinement Grids	64
	9.7 Improved Quality Interpolation	65 65
	9.7.1 Note	03
10	Treatment of nearby boundaries and the boundaryDiscretisationWidth	67
11	Adaptive Mesh Refinement	69
	11.1 The algorithm for updating refinement meshes added to an overlapping grid	69
	11.2 Example: Circle in a Channel	71

1 INTRODUCTION 3

1 Introduction

The ogen program can be used to interactively generate overlapping grids.

The basic steps to follow when creating an overlapping grid are

- create mappings that cover a domain and overlap where they meet.
- generate the overlapping grid (ogen calls the grid generator Ogen).
- save the grid in a data-base file.

The ogen program is found in the Overture/bin directory. Just type ogen to get started. You can also type 'ogen noplot' in which case ogen will run without graphics. This is useful if you just want to execute a command file to regenerate a grid – running without graphics is faster. If you have a command file, example.cmd, then you can type 'ogen example.cmd' or 'ogen example' (a .cmd will automatically be added) to run the commands in the file. To run without graphics type 'ogen noplot example'.

Once you have made a grid and saved it in a data-base file (named myGrid.hdf, for example) you can look at it using the command Overture/bin/plotStuff myGrid.hdf (or just Overture/bin/plotStuff myGrid).

Figure 1 shows a snap-shot of ogen running.

Other documents of interest that are available through the Overture home page are

- Mapping class documentation: mapping.tex, [2]. Many of the mappings that are used to create an overlapping grid are documented here.
- Interactive plotting: PlotStuff.tex, [3].

2 Commands

2.1 Commands for ogen

The commands in the initial ogen menu are

create mappings: create mappings to represent the geometry. See section (2.2).

generate an overlapping grid: once mappings have been created an overlapping grid can be generated with this option. This will call the Ogen grid generator. See section (9.1) for a list of the commands available with the grid generator.

make an overlapping grid: this calls the old Cgsh grid generator, the original Overture grid generator.

save and overlapping grid: Save an overlapping grid in a data base file.

2.2 Commands when creating Mappings

The basic commands available from the create mappings menu option are (this list will in general be out of date so you are advised to run ogen to see the currently available options). Most of these commands simply create a new Mapping and call the update function for that Mapping. Descriptions of the **Mapping's** referred to here can be found in the mapping documentation [2].

help: output minimal help.

1D Mappings:

line: Build a line in 1D. This can be used for a 1D overlapping grid. Reference LineMapping.

stretching function: Reference StretchMapping.

spline (1D): Reference SplineMapping.

2D Mappings:

Airfoil: Build a two-dimensional airfoil from various choices including the NACA 4 digit series airfoils. Reference AirfoilMapping.

Annulus: Reference Annulus Mapping.

Circle or ellipse: Reference CircleMapping.

DataPointMapping: Build a new Mapping from a set of discrete data points. The data points may be read from a plot3d file. Reference DataPointMapping.

line (2D): Reference LineMapping.

nurbs (curve): build a NURBS (a type of spline) curve or surface from control points or by interpolating data points. Reference NurbsMapping.

rectangle: Reference SquareMapping.

SmoothedPolygon: Build a grid or curve with a boundary that is a polygon with smoothed out corners. Reference SmoothedPolygonMapping.

spline : Reference SplineMapping.

tfi: Build a new Mapping from existing curves or surfaces using transfinite interpolation (Coon's patch). Reference TFIMapping.

3D Mappings:

Box: Reference BoxMapping.

Cylinder: Reference Cylinder Mapping.

Circle or ellipse (3D) : Reference CircleMapping.

CrossSection: Reference CrossSectionMapping.

DataPointMapping: Build a new Mapping from a set of discrete data points. The data points may be read from a plot3d file. Reference DataPointMapping.

line (3D): Reference LineMapping.

nurbs (**surface**) :build a NURBS (a type of spline) curve or surface from control points or by interpolating data points. Reference NurbsMapping.

plane or rhombus : Reference PlaneMapping.

Sphere: Reference SphereMapping.

spline (3D) : Reference SplineMapping.

th: Build a new Mapping from existing curves or surfaces using transfinite interpolation (Coon's patch). Reference TFIMapping.

transform:

body of revolution: create a body of revolution from a two-dimensional Mapping. Reference Revolution Mapping.

elliptic: generate an elliptic grid on an existing grid in order to redistribute grid points. Reference Elliptic-Transform.

fillet: Build a fillet surface to join two intersecting surfaces. Reference FilletMapping.

hyperbolic : Reference HyperbolicMapping.

hyperbolic surface: Reference HyperbolicSurfaceMapping.

intersection : Determine the intersection curve between two intersecting surfaces. Reference Intersection— Mapping.

mapping from normals: Generate a new Mapping by extending normals from a curve or a surface. Reference NormalMapping.

reparameterize: reparameterize an existing Mapping by

- 1. restricting the domain space to a sub-rectangle (this would be used to create an refinement patch on an adaptuve grid)
- 2. remove a polar singularity by creating a new patch with an orthographic transform.

Reference ReparameterizationTransform, OrthographicTransform and Restriction-Mapping.

rotate/scale/shift: transform an existing Mapping. Reference MatrixMapping.

stretch coordinates: stretch (cluster) the grid points in the coordinate directions. Reference StretchTransform and StretchMapping.

change:

change a mapping: Make changes to an existing Mapping. **copy a mapping**: Make a copy of an existing Mapping. **delete a mapping**: delete an existing Mapping.

data base:

open a data-base: open an Overture data-base file (new or old).
get from the data-base: read Mapping's from the data-base.
put to the data-base: save a Mapping in the data-base.
close the data-base: close the data-base.
save plot3d file: write a plot3d file.

read from file:

read plot3d file: read a plot3d formatted file and extract the grids. Each grid becomes a DataPointMapping.

read iges file: *experimental* read an IGES (Initial Graphics Exchange Specification) file such as created by pro/ENGINEER and build NURBS and trimmed NURBS found in the file.

read overlapping grid file: read an existing overlapping grid data base file and extract all the Mapping's from it. These Mappings can then be changed.

view mappings: view the currently defined Mappings.

check mapping: check a Mapping to see that it is defined properly. This is normally only done when one defines a new Mapping.

exit this menu:

3 Things you should know to make an overlapping grid

Here are some things that you will need to know when building overlapping grids. The examples that follow will demonstrate all of these ideas.

3.1 Boundary conditions

Each side of each component grid must be given a boundary condition value. These boundary conditions are essential since they indicate whether a boundary is a physical boundary (a value greater than 0), an interpolation boundary (a value equal to zero) or a side that is has a periodic boundary condition (a value less than zero). The boundary condition values are stored in an array as

$$\label{eq:boundaryCondition} \begin{aligned} \text{boundaryCondition}(\texttt{side}, \texttt{axis}) &= \begin{cases} > 0 & \text{physical boundary} \\ = 0 & \text{interpolation boundary} \\ < 0 & \text{periodic boundary} \end{cases} \\ \text{boundaryCondition}(0,0) &= \text{left} \\ \text{boundaryCondition}(1,0) &= \text{right} \\ \text{boundaryCondition}(0,1) &= \text{bottom} \\ \text{boundaryCondition}(1,1) &= \text{top} \\ \text{boundaryCondition}(0,2) &= \text{front (3D)} \\ \text{boundaryCondition}(1,2) &= \text{back (3D)} \end{aligned}$$

where side=0,1 and axis=0,1 in 2D, or axis=0,1,2 in 3D, indicates the face of the the grid. Note that each grid is a mapping from the unit square or unit cube to a physical domain – the terms left, right, bottom, top, front and back refer to the

sides of the unit square or cube. When you enter the boundary condition values (when changing them in a mapping) you should enter them in the order: left, right, bottom, top, front, back.

The grid generator uses physical boundaries to cut holes in other grids that happen to cross that physical boundary. See, for example, the "cylinder in a channel example" where the rectangular grid has a hole cut out of it. Interpolation boundaries are non-physical boundaries where the grid generator will attempt to interpolate the points from other component grids. A periodic boundary can be either be a branch cut (as on an annulus) or it can indicate a periodic domain (as with a square where the right edge of the square is to be identified with the left edge).

3.2 Share flag

The share flag is used to indicate when two different component grids share a common boundary (see the "inlet outlet" example, section (4.7). The grid generator uses the share flag so that a boundary of one component grid will not accidently cut a hole in another grid when the two grids are actually part of the same boundary. This could happen since, due to inaccuracies in representing each grid, it may seem that the boundary on one grid lies inside or outside the other grid (even though they are meant to be the same boundary curve).

The share flag is saved in an array that is the same shape as the boundary condition array

```
\begin{split} & \mathtt{share}(\mathtt{side},\mathtt{axis}) > 0 \quad \text{a code that should be the same on all shared boundaries.} \\ & \mathtt{share}(0,0) = \mathsf{left} \\ & \mathtt{share}(1,0) = \mathsf{right} \\ & \mathtt{share}(0,1) = \mathsf{bottom} \\ & \mathtt{share}(1,1) = \mathsf{top} \\ & \mathtt{share}(0,2) = \mathsf{front} \ (3\mathsf{D}) \\ & \mathtt{share}(1,2) = \mathsf{back} \ (3\mathsf{D}) \end{split}
```

where side=0,1 and axis=0,1 in 2D, or axis=0,1,2 in 3D, indicates the face of the the grid.

Thus the share flags on all grid faces that belong to the same boundary should be given the same share value. This could be accomplished by setting all share values to 1 say, although this is slightly dangerous as the grid generator could make a mistake. It is better to use a different positive integer for each different boundary.

3.3 Turning off the cutting of holes

By default, the overlapping grid generator will use any physical boundary (a side of a grid with a positive boundaryCondition to try and cut holes in any other grid that lies near the physical boundary. Thus in the "cylinder in a channel example" section (4.3) the inner boundary of the annulus cuts a hole in the rectangular grid. Sometimes, as in the "inlet outlet" example, section (4.7), one does not want this to happen. In this case it is necessary to explicitly specify which grids are allowed to cut holes in which other grids. This can be done through in the change parameters option with the prevent hole cutting option, see section the "inlet outlet" example, (4.7).

3.4 Turning off interpolation between grids

By default all grids can interpolate from all other grids. This default can be changed and you may specify which grids may interpolate from which other grids. This option can be used, for example, to build grids for two disjoint domains that match along a boundary as shown in figure (22).

3.5 Implicit versus explicit interpolation

There are two types of interpolation, **explicit** and **implicit**. **Explicit** interpolation means that a point that is interpolated will only use values on other grids that are not interpolation points themselves. This means that will the default 3 point interpolation the amount of overlap must be at least 1.5 grid cells wide. With explicit interpolation the interpolation equations can be solved explicitly (and this faster).

With **implicit** interpolation the points used in the interpolation stencil may themselves be interpolation points. This means that will the default 3 point interpolation the amount of overlap must be at least .5 grid cells wide. Thus **implicit interpolation is more likely to give a valid grid** since it requires less overlap. With implicit interpolation the interpolation equations are a coupled system that must be solved. This is a bit slower but the Overture interpolation function handles this automatically.

Figure 1: A snapshot of ogen

4 Examples

In this section we describe a number of *command files* that can be used to create various overlapping grids. During an interactive session a command file can be saved, see the option 'log commands to file' in the file pull-down menu. By default the command file ogen.cmd is automatically saved. The command file will record all the commands that are issued. The command file can be later read in, using 'read command file' in the file pull-down menu, and the commands will be executed. You can also type 'ogen example.cmd' to run the command file named example.cmd with graphics or 'ogen noplot example.cmd' to run without graphics.

The command file can be edited and changed. Once a complicated grid has been created it is usually easiest to make minor changes by editing the command file. The pause command can be added to the command file which will cause the program to pause at that point and wait for an interactive response – one can then can either continue or break.

4.1 Square

Here is a command file to create a square. (file Overture/sampleGrids/square5.cmd) We first make a mapping for the square and assign various parameters such as the number of grid points and the boundary conditions. Any positive number for the boundary condition indicates a physical boundary. Next the overlapping grid generator is called (make an overlapping grid) to make an overlapping grid (which is trivial in this case). Finally the overlapping grid is saved in a data-base file. The data-base file is an HDF formatted file. HDF is the the Hierarchical Data Format (HDF) from the National Centre for Super-Computing Applications (NCSA). You can look at the data base file created here by typing plotStuff square5.hdf (or just plotStuff square5) where plotStuff is found in Overture/bin.

```
* make a simple square
2
    create mappings
3
      rectangle
4
        mappingName
5
           square
6
        lines
7
           6 6
8
        boundary conditions
9
           1 1 1 1
10
      exit
11
    exit
12
13
    generate an overlapping grid
14
      square
15
      done
16
      change parameters
17
         ghost points
18
           all
19
           2 2 2 2 2 2
20
      exit
21
      compute overlap
22
    exit
23
24
    save an overlapping grid
25
      square5.hdf
26
      square5
27
    exit
```


An "overlapping grid" that is just a square

4.2 Stretched Annulus

FAQ: What the heck is going on with the stretching function?! (F. Olsson-Hector)

Answer: Here is command file create with stretching. (file a to an annulus Overture/sampleGrids/stretchedAnnulus.cmd) Grid lines can be stretched in the coordinate directions (i.e. in the unit-square coordinates). When grid lines are stretched, as in the example below, the graphics screen will show one of the following

- The mapping to be stretched (annulus)
- The unit square to be stretched.
- The one dimensional stretching function.

The stretching functions are described in the documentation on Mapping's [2].

```
2
        Create an annulus and stretch the grid lines
3
4
    create mappings
5
     * create an Annulus
6
       Annulus
7
       lines
8
         41 11
9
       exit
10
    * stretch the grid lines
                                                          8
11
       stretch coordinates
12
         transform which mapping?
13
           Annulus
                                                          0.75
14
         stretch
15
           specify stretching along axis=0
16
     * choose a layer stretching a*tanh(b*(r-c
                                                          89
17
             layers
18
                1
                                                          0.25
19
                give a,b,c in above formula
20
                1. 10. .5
21
              exit
                                                          8
22
           specify stretching along axis=1
23
              lavers
24
                                                          025
25
                1. 5. 0.
26
           exit
27
         exit
                                                          89
28
       exit
29
    exit this menu
30
31
    * make an overlapping grid
32
33
    generate an overlapping grid
                                                          ∓100
                                                                -0.75
                                                                       -050
                                                                             −0.25
                                                                                    0.00
                                                                                          0.25
                                                                                                050
                                                                                                       0.75
                                                                                                             1,00
34
       stretched-Annulus
35
36
       compute overlap
37
       exit
                                                                        An annulus with stretching
38
39
       save as an hdf file
40
41
    save an overlapping grid
42
    stretchedAnnulus.hdf
43
    grid
44
    exit
```

For the pundits: The stretched annulus is a StretchTransform Mapping which is a composition of the Stretched-Square Mapping and the Annulus Mapping. The StretchedSquare uses the Stretch Mapping where the actual one dimensional stretching functions are defined.

4.3 Cylinder in a channel

Here is a command file to create a cylinder in a channel. (file Overture/sampleGrids/cic.cmd) In this case we make two mappings, one a background grid and one an annulus. The boundary conditions on the annulus are set so that the outer boundary is an interpolation boundary (=0) while the boundary conditions on the branch cut are -1 to indicate a periodic boundary. We show two overlapping grids, one made with implicit interpolation (default) and one made with explicit interpolation. The latter has a bigger region of overlap.

An overlapping grid for a cylinder in a channel with explicit interpolation

4.4 Cylinder in a channel, cell-centered version

37

38

39

40

41

cicCC.hdf

cicCC

exit

save an overlapping grid

Here we repeat the last example but create a cell-centered grid. In a cell-centered grid the cell-centres of one grid are interpolated from the cell-centres of another grid. For this reason the cell-centred grid requires slighly more overlap between the component grids.

An overlapping grid for a cylinder in a channel, cell-centered case.

Cylinder in a channel, fourth-order version

cic.4.hdf

cic4

exit

56

57

58

Here we repeat the last example but create a grid appropriate for a fourth-order discretization. We need to increase the discretization width to 5 and the interpolation width to 5. This can either be done explicitly or the option "order of accuracy" can be used. Notice that two lines of interpolation points are generated as required by the wider stencil.

```
2
      circle in a channel, for fourth order accuracy. This
3
      can be used with primer/wave
 4
5
    create mappings
 6
 7
    rectangle
 8
      set corners
9
         -2. 2. -2. 2.
10
       lines
11
         129 129
12
      boundary conditions
13
         1 1 1 1
14
       mappingName
15
       square
16
                                                      2.00
    exit
17
18
    Annulus
19
       lines
20
         161 9
21
       outer radius
22
         .75
                                                      1.00
23
       boundary conditions
24
         -1 -1 1 0
25
    exit
                                                      0.50
26
27
    exit
28
    generate an overlapping grid
29
                                                      0.00
         square
30
         Annulus
31
       done
32
                                                     -0.50
       change parameters
33
         * choose implicit or explicit interp
34
         interpolation type
35
           implicit for all grids
                                                     -1.00
36
           * explicit for all grids
37
         ghost points
38
           all
                                                     -1.50
39
           2 2 2 2
40
         order of accuracy
41
           fourth order
                                                     -2.00
42
         we could also do the following:
                                                               -1.50
                                                                      -1.00
                                                                             -0.50
                                                                                    0.00
                                                                                           0.50
                                                        -2.00
43
           discretization width
44
            all
45
            5 5
46
           interpolation width
47
            all
48
            all
49
            5 5
50
51
       compute overlap
52
53
54
    save an overlapping grid
55
```

An overlapping grid for a cylinder in a channel, fourth-order case.

1.00

150

4.6 Cylinder in a channel, multigrid version

Here we make a grid that can be used with a multigrid solver. The only difference in the command file is that we must specify how many multigrid levels we require. **NOTE** that since each multigrid level must be a valid overlapping grid you cannot expect to have more than a few levels. See the examples in the primer for how to access the different multigrid levels in a CompositeGrid.

```
2
      circle in a channel with MG levels
 4
    create mappings
 5
 6
    rectangle
 7
       set corners
 8
         -2. 2. -2. 2.
 9
       lines
10
         45 45
11
       boundary conditions
12
         1 1 1 1
13
       mappingName
14
       square
15
    exit
16
17
    Annulus
18
       lines
19
         65 9
20
       boundary conditions
21
         -1 -1 1 0
22
    exit
23
24
    exit
25
    generate an overlapping grid
26
       specify number of multigrid levels
27
         2
28
       square
29
       Annulus
30
       done
31
       change parameters
32
         interpolation type
33
           explicit for all grids
34
         ghost points
35
           all
36
           2 2 2 2 2 2
37
       exit
38
       * pause
39
       compute overlap
40
41
    save an overlapping grid
42
    cicmg.hdf
43
    cic
44
    exit
```


An overlapping grid for a cylinder in a channel, multigrid level 0.

An overlapping grid for a cylinder in a channel, multigrid level 1.

4.7 Inlet-outlet

In this example we demonstrate

share flags: to specify that two component grids have sides that belong to the same physical boundary curve. This prevents one physical boundary from accidently cutting a hole on a grid that shares the same boundary.

no hole cutting: turn off hole cutting to prevent physical boundaries from cutting holes in some other grids.

view mappings: the mappings can be plotted with boundaries coloured by the boundary condition values or coloured by the share flag values. This allows one to check that the values have been set properly.

This grid is remarkably similar to a grid created by Anders Petersson.

Here is a command file to create the grid for the inlet-outlet example. (file Overture/sampleGrids/inletOutlet.cmd).

```
55
 1
                                                                    0 1 1 0
 2
    * create a grid to demonstrate various features
                                                          56
                                                                  {}^{\star} One boundary here should match one boundary of
 3
                                                          57
                                                                  * the backGroundGrid, while another boundary
 4
                                                          58
    create mappings
                                                                  * should match a boundary on the inlet-bottom.
 5
                                                          59
      * make a back ground grid
                                                                    Set share flag to match corresponding share values
 6
                                                          60
      rectangle
                                                                  share
 7
                                                          61
                                                                    0 5 2 0
        set corners
 8
                                                          62
           0 2. 0 1.
                                                                  exit
9
        lines
                                                          63
10
           61 31
                                                          64
                                                                 SmoothedPolygon
11
        mappingName
                                                          65
                                                                   mappingName
12
                                                          66
                                                                     inlet-bottom
         backGroundGrid
13
                                                          67
                                                                   vertices
        share
14
                                                          68
           1 2 3 4
                                                                    3
15
                                                          69
                                                                    2. .15
       exit
                                                          70
16
       * make an annulus
                                                                    2. .35
17
      Annulus
                                                          71
                                                                    2.25 .35
18
        centre for annulus
                                                          72
                                                                  lines
19
                                                          73
                                                                    25 11
          1. .5
20
                                                          74
        inner radius
                                                                  n-dist
21
                                                          75
                                                                    fixed normal distance
          . 2
22
                                                          76
        outer radius
                                                                     .175
                                                                           . 2
23
                                                          77
                                                                  sharpness
          . 4
24
        lines
                                                          78
                                                                    10.
25
                                                          79
           41 9
                                                                    10.
26
                                                          80
                                                                    10.
        mappingName
27
                                                          81
                                                                  t-stretch
           annulus
28
                                                          82
        boundary conditions
                                                                    0. 10.
29
                                                          83
                                                                    1. 10.
           -1 -1 1 0
30
                                                          84
                                                                    0. 10.
                                                          85
31
       * the inlet (on the right) will consist of two
                                                                  boundary conditions
32
       * smoothed polygons
                                                                    0 1 1 0
33
                                                          87
      SmoothedPolygon
                                                                  * One boundary here should match one boundary
34
        mappingName
                                                          88
                                                                  * of the backGroundGrid, while another boundary
35
           inlet-top
                                                          89
                                                                  * should match a bounbdary on the inlet-bottom.
36
                                                          90
                                                                  * Set share flag to match corresponding share values
        vertices
                                                          91
37
38
                                                          92
          2. .85
                                                                    0 5 2 0
39
          2. .65
                                                          93
                                                                  exit
                                                          94
40
                                                                 * here is an outlet grid made in the poor man's way
          2.25 .65
                                                          95
41
       n-dist
                                                                 rectangle
                                                          96
42
          fixed normal distance
                                                                   set corners
43
                                                          97
          -.175 .2
                                                                      -.35 .05 .3 .7
44
                                                          98
        sharpness
                                                                   lines
45
                                                          99
          10.
                                                                     15 15
                                                         100
46
          10.
                                                                   mappingName
47
          10.
                                                         101
                                                                    outlet
48
                                                         102
        t-stretch
                                                                   boundary conditions
49
          0. 10.
                                                         103
                                                                     1 0 1 1
50
                                                         104
         1. 10.
                                                                 exit
51
          0. 10.
                                                         105
                                                                 * now look at the mappings
52
                                                         106
        lines
                                                                 view mappings
53
                                                         107
          25 11
                                                                   backGroundGrid
54
                                                         108
       boundary conditions
                                                                   annulus
```

```
109
                                                        134
         inlet-top
                                                                 inlet-bottom
110
         inlet-bottom
                                                        135
                                                               done
111
         outlet
                                                        136
                                                               change parameters
112
                                                        137
                                                                 prevent hole cutting
113
         * The grid is plotted with boundaries coloure 38
                                                                   backGroundGrid
         ^{\star}~ by the boundary condition number. Here we 139\,
114
                                                                     all
         * should check that all interpolation boundard 40s
                                                                   outlet
         * are 0 (blue), all physical boundaries are ploblitive
116
                                                                     all
117
         * and periodic boundaries are black
                                                        142
                                                                 done
118
         * pause
                                                        143
                                                                 ghost points
119
                                                        144
                                                                   all
120
         * now we plot the boundaries by share value 145
                                                                   2 2 2 2 2 2
121
         * The sides that correspond to the same boundary
                                                               exit
122
         * should be the same colour
                                                        147
                                                             * display intermediate
123
         colour boundaries by share value
                                                        148
                                                                set debug parameter
                                                        149
124
         * pause
                                                                 31
125
         erase and exit
                                                        150
                                                               compute overlap
126
                                                        151
                                                               exit
       exit
127
     generate an overlapping grid
                                                        152
     * put the nonconforming grid first to be a lower 153
128
                                                             save an overlapping grid
     * priority than the back-ground
                                                        154
                                                               inletOutlet.hdf
130
                                                        155
         outlet
                                                               inletOutlet
131
         backGroundGrid
                                                        156
                                                             exit
132
         annulus
                                                        157
133
         inlet-top
```

The cell-centred version may be created with Overture/sampleGrids/inletOutlet.cmd.

Figure 2: Inlet-outlet mappings plotted from the "view mappings" menu, showing boundary condition values. Physical boundaries have a positive value (1=green), interpolation boundaries have a value of zero (0=blue) and periodic boundaries have a negative value (shown in black).

Figure 3: Inlet-outlet mappings plotted from the "view mappings" menu, showing shared side values. Grids that share the same physical boundary should have the same value of the share flag. For example, the two inlet grids on the right share boundaries with the back-ground grid (value 2=red). The inlet grids also share boundaries with each other (value 5)

Figure 4: Inlet-outlet overlapping grid. To create this grid we had to prevent the background grid from cutting holes in the two inlet grids (on the right) and the outlet grid on the left. The outlet grid was also prevented from cutting holes in the background grid.

4.8 Valve

Here is a command file to create a grid around a two-dimensional valve (file Overture/sampleGrids/valve.cmd).

```
1
                                                          63
                                                                exit
 2
    * Create an overlapping grid for a 2D valve
                                                          64
 3
                                                          65
                                                                * Here is the part of the boundary that
 4
                                                                \star the valve closes against
       time to make: old:27s (ultra) new: 4.4s
                                                          66
 5
                                                          67
 6
    create mappings
                                                          68
                                                                SmoothedPolygon
                                                          69
                                                                  mappingName
 8
      * First make a back-ground grid
                                                          70
                                                                     stopper
9
                                                          71
                                                                  vertices
10
                                                          72
      rectangle
                                                                     4
                                                          73
                                                                     1. .5
11
        mappingName
                                                          74
                                                                    0.75 .5
12
         backGround
                                                          75
13
        set corners
                                                                     0.5 .75
14
                                                          76
          0 1. 0 1.
                                                                     0.5 1.
                                                                     n-dist
15
                                                          77
        lines
          * 41 41
                                                          78
16
                                                                      fixed normal distance
          * 51 51
17
                                                          79
                                                                       * .1
                                                          80
18
          49 49
                                                                       .05
19
                                                          81
        share
                                                                     lines
20
          1 2 3 4
                                                          82
                                                                       * 61 9
21
                                                          83
                                                                       * 61 9
      exit
22
                                                          84
                                                                       65 9
23
      * Now make the valve
                                                          85
                                                                     t-stretch
24
                                                          86
                                                                      1. 0.
25
                                                          87
      SmoothedPolygon
                                                                       1. 5.
26
        mappingName
                                                          88
                                                                      1. 5.
27
                                                          89
          valve
                                                                      1. 0.
28
                                                          90
        vertices
                                                                    n-stretch
29
                                                          91
         * .4 .4 .65 .65 ok
                                                                      1. 4. 0.
30
         * .45 .45 .7 .7
                                                          92
                           ok
                                                                     boundary conditions
         * .47 .47 .72 .72 ok
31
                                                          93
                                                                      1 1 1 0
32
         * .475 .475 .725 .725 no
                                                          94
                                                                     share
33
         * .47 .47 .72 .72 last used, ok
                                                          95
                                                                       2 4 0 0
34
                                                          96
                                                                exit
                                                          97
35
         0.47 0.
                                                              exit
                                                          98
36
         0.47 .75
                                                          99
37
                                                              * Make the overlapping grid
          0.72 .5
38
                                                         100
         0.72 0.
39
        n-dist
                                                         101
                                                              generate an overlapping grid
40
                                                         102
          fixed normal distance
                                                                  backGround
41
                                                         103
           * .1
                                                                  stopper
42
                                                         104
           .05
                                                                  valve
43
        lines
                                                         105
                                                                done
44
           * 65 9
                                                         106
                                                                change parameters
          * 75 9
45
                                                         107
                                                                  ghost points
46
          73 9
                                                         108
                                                                     all
47
                                                         109
        boundary conditions
                                                                     2 2 2 2 2 2
48
                                                         110
          1 1 1 0
                                                                exit
                                                                 debug
49
        share
                                                         111
50
          3 3 0 0
                                                         112
51
                                                         113
                                                                 display intermediate results
        sharpness
52
                                                         114
          15
                                                                compute overlap
53
          15
                                                         115
                                                                pause
54
          15
                                                         116
                                                                exit
55
                                                         117
          15
56
        t-stretch
                                                         118
                                                              * save an overlapping grid
57
                                                         119
          1. 0.
                                                              save a grid (compressed)
58
                                                         120
          1. 6.
                                                              valve.hdf
59
                                                         121
          1. 4.
                                                              valve
                                                         122
60
          1. 0.
                                                              exit
61
                                                         123
        n-stretch
          1. 4. 0.
```

The resulting grid is shown in figure 5. The cell centered version may be created with Overture/sampleGrids/valveCC.cmd.

After unmarkInterpolationPoints

Figure 5: An overlapping grid for a valve

4.9 NACA airfoil

Here is a command file to create a grid around a two-dimensional NACA0012 airfoil (file Overture/sampleGrids-/naca0012.cmd). The airfoil curve is created first with the AirfoilMapping (see the Mapping documentation for an explanation of NACA 4 digit airfoils). This curve is blended with an ellipse (using transfinite interpolation) to make an initial grid. The transfinite interpolation mapping then then smoothed using elliptic grid generation to form the airfoil grid.

```
46
                                                                    airfoil-tfi
2
    * Make a grid around a NACA0012 airfoil
                                                         47
                                                                elliptic smoothing
3
                                                         48
                                                                  * slow start to avoid porblems at trailing edge
4
    create mappings
                                                         49
                                                                  number of multigrid levels
5
                                                         50
6
      * First make a back-ground grid
                                                         51
                                                                  maximum number of iterations
7
                                                         52
                                                                    15
8
                                                         53
      rectangle
                                                                  red black
9
                                                         54
                                                                  smoother relaxation coefficient
        mappingName
10
                                                         55
          backGround
                                                                    . 1
11
        set corners
                                                         56
                                                                  generate grid
                                                         57
12
          -1.5 2.5 -1.5 1.5
                                                                  * now reset parameters for better convergence
13
                                                         58
        lines
                                                                  maximum number of iterations
14
          41 33 41 31
                                                         59
15
                                                         60
      exit
                                                                  smoother relaxation coefficient
16
      * make the NACA0012 airfoil (curve)
                                                         61
                                                                    . 8
17
      Airfoil
                                                         62
                                                                  generate grid
18
                                                         63
        airfoil type
                                                                  exit
19
          naca
                                                         64
                                                                  mappingName
20
                                                         65
      exit
                                                                    airfoil-grid
21
      * make an ellipse as an outer boundary
                                                         66
                                                                  * pause
22
      Circle or ellipse
                                                         67
                                                                exit
23
                                                         68
                                                              exit
        specify centre
24
                                                         69
         .5 .0
25
        specify axes of the ellipse
                                                         70
                                                              * make an overlapping grid
26
                                                         71
          1.5 1.
27
                                                         72.
      exit
                                                              generate an overlapping grid
28
      * blend the airfoil to the ellipse to make a gri33
                                                                  backGround
29
                                                         74
                                                                  airfoil-grid
30
                                                         75
        choose bottom curve
                                                                done
31
                                                         76
          airfoil
                                                                change parameters
32
                                                         77
        choose top curve
                                                                  ghost points
33
                                                         78
          circle
                                                                    all
                                                         79
34
        boundary conditions
                                                                    2 2 2 2 2 2
35
                                                         80
          -1 -1 1 0
                                                                exit
36
        lines
                                                         81
                                                                compute overlap
37
                                                         82
          73 17
                                                              exit
38
        mappingName
                                                         83
39
                                                         84
          airfoil-tfi
                                                              save an overlapping grid
        * pause
40
                                                         85
                                                              naca0012.hdf
41
      exit
                                                         86
                                                              naca
42
                                                         87
                                                              exit
43
      elliptic
                                                         88
44
                                                         89
        *project onto original mapping (toggle)
45
        transform which mapping?
```

The resulting grid is shown in figure 6.

0

22

Figure 6: An overlapping grid for a NACA0012 airfoil

4.10 Hybrid grid for the inlet-outlet

Here is a command file to create a hybrid for an inlet-outlet geometry. Overture/sampleGrids-/inletOutlet.hyb.cmd).

```
67
                                                                  vertices
 2
    * create a grid to demonstrate various features
                                                         68
                                                                   3
 3
                                                         69
                                                                   2. .15
                                                         70
    create mappings
                                                                   2. .35
 5
                                                         71
      * make a back ground grid
                                                                   2.25 .35
 6
      rectangle
                                                         72
                                                                 lines
 7
                                                         73
        set corners
                                                                   25 11
 8
          0 2. 0 1.
                                                         74
                                                                 n-dist
9
                                                         75
        lines
                                                                   fixed normal distance
10
          61 31
                                                         76
                                                                    .175 .2
11
                                                         77
        mappingName
                                                                 sharpness
                                                         78
12
         backGroundGrid
                                                                   10.
13
        share
                                                         79
                                                                   10.
                                                         80
14
          1 2 3 4
                                                                   10.
15
                                                         81
                                                                 t-stretch
      exit
16
      * make an annulus
                                                         82
                                                                   0.10.
17
                                                         83
      Annulus
                                                                   1. 10.
        centre for annulus
                                                         84
                                                                   0.10.
19
                                                         85
          1. .5
                                                                 boundary conditions
20
        inner radius
                                                         86
                                                                  0 1 1 0
21
                                                                 * One boundary here should match one boundary
                                                         87
         . 2
22
        outer radius
                                                         88
                                                                 * of the backGroundGrid, while another boundary
23
                                                         89
         . 4
                                                                 * should match a bounbdary on the inlet-bottom.
24
                                                         90
                                                                 * Set share flag to match corresponding share values
        lines
25
                                                         91
          41 9
                                                                 share
                                                         92
26
        mappingName
                                                                   0 5 2 0
27
                                                         93
                                                                 exit.
          annulus
                                                         94
28
        boundary conditions
                                                                * here is an outlet grid made in the poor man's way
29
                                                         95
          -1 -1 1 0
                                                                rectangle
30
                                                         96
                                                                  set corners
      exit
31
      * the inlet (on the right) will consist of two
                                                         97
                                                                    -.35 .05 .3 .7
32
      * smoothed polygons
                                                         98
                                                                  lines
                                                         99
      SmoothedPolygon
33
                                                                    15 15
34
                                                        100
                                                                  mappingName
        mappingName
35
          inlet-top
                                                        101
                                                                   outlet
36
                                                        102
        vertices
                                                                  boundary conditions
37
         3
                                                        103
                                                                    1 0 1 1
38
                                                        104
          2. .85
                                                                exit
39
          2. .65
                                                        105
                                                                * now look at the mappings
          2.25 .65
40
                                                        106
                                                                view mappings
41
                                                        107
       n-dist
                                                                  backGroundGrid
42
                                                        108
         fixed normal distance
                                                                  annulus
43
                                                        109
          -.175 .2
                                                                  inlet-top
44
       sharpness
                                                        110
                                                                  inlet-bottom
45
                                                        111
         10.
                                                                  outlet
46
                                                        112
         10.
47
                                                        113
                                                                  * The grid is plotted with boundaries coloured
         10.
48
                                                                  ^{\star} by the boundary condition number. Here we
                                                        114
       t-stretch
49
         0. 10.
                                                        115
                                                                  * should check that all interpolation boundaries
50
         1. 10.
                                                        116
                                                                  * are 0 (blue), all physical boundaries are positive
51
         0.10.
                                                        117
                                                                  * and periodic boundaries are black
52
       lines
                                                        118
                                                                  * pause
53
                                                        119
         25 11
54
       boundary conditions
                                                        120
                                                                  * now we plot the boundaries by share value
55
         0 1 1 0
                                                        121
                                                                  * The sides that correspond to the same boundary
        * One boundary here should match one boundary 122
                                                                  * should be the same colour
57
        * the backGroundGrid, while another boundary 123
                                                                  colour boundaries by share value
58
        * should match a boundary on the inlet-bottom 124
                                                                  pause
59
       * Set share flag to match corresponding share 1/25 lues
                                                                  erase and exit
60
       share
                                                        126
                                                                exit
61
         0 5 2 0
                                                        127
                                                              generate a hybrid mesh
62
       exit
                                                        128
                                                              * put the nonconforming grid first to be a lower
                                                              * priority than the back-ground
63
                                                        129
64
                                                        130
      SmoothedPolygon
                                                                  outlet
65
                                                        131
        mappingName
                                                                  backGroundGrid
66
           inlet-bottom
                                                        132
                                                                  annulus
```

```
133
                                                          146
                                                                     31
         inlet-top
134
         inlet-bottom
                                                          147
                                                                  compute overlap
135
                                                          148
       done
136
       change parameters
                                                          149
                                                                  set plotting frequency (<1 for never)
137
                                                          150
         prevent hole cutting
138
                                                          151
           {\tt backGroundGrid}
                                                                  continue generation
139
              all
                                                          152
140
           outlet
                                                          153
                                                                  save grid in ingrid format
141
              all
                                                          154
                                                                  inletOutlet.hyb.msh
142
                                                          155
         done
143
                                                          156
       exit
144
                                                          157
        display intermediate
145
        set debug parameter
```


Figure 7: A hybrid grid for an inlet-outlet geometry.

4.11 Stretched cube

37

exit

stretchedCube

Here is a command file to create a simple box in 3D with stretched grid lines. (file Overture/sampleGrids/-stretchedCube.cmd)

```
1
2
    * Create a 3D cube with stretched grid lines
3
    create mappings
5
6
        exit
7
      stretch coordinates
8
        stretch
9
         choose a layer stretching a*tanh(b*(r-
10
         along axis 0
11
          specify stretching along axis=0 (x1)
12
            layers
13
              give a,b,c in above formula
14
15
            1. 10. .5
16
          exit
17
         choose a stretching function with 2
18
         layers along axis1
19
          specify stretching along axis=1 (x2)
20
            layers
21
22
              give a,b,c for layer 1
23
            1. 10. 0.
24
              give a,b,c for layer 2
25
            1. 10. 1.
26
          exit
27
        exit
28
      exit
29
    exit this menu
30
    generate an overlapping grid
31
      stretched-box
32
      done
33
      compute overlap
34
35
    save an overlapping grid
36
      stretchedCube.hdf
```


An overlapping grid for a stretched cube.

4.12 Sphere in a box

Here is a command file to create a sphere in a box. The sphere is covered with two orthographic patches, one for the north-pole and one for the south-pole. (file Overture/sampleGrids/sib.cmd)

```
1
                                                         40
                                                               boundary conditions
2
    * command file to create a sphere in a box
                                                         41
                                                                 0 0 0 0 1 0
3
                                                         42
                                                                share
       time to make: 594s new: 3.5
                                                         43
                                                                  0 0 0 0 1 0
 5
                                                         44
          cpu=2s (ov15 sun-ultra optimized)
                                                                mappingName
6
             =.37 (tux50)
                                                         45
                                                                  south-pole
 7
    create mappings
                                                         46
                                                             exit
 8
                                                         47
    * first make a sphere
                                                             * Here is the box
9
                                                         48
10
                                                         49
    exit
                                                         50
11
                                                             Box
12
    * now make a mapping for the north pole
                                                         51
                                                                set corners
13
                                                         52
                                                                 -2 2 -2 2 -2 2
14
    reparameterize
                                                         53
                                                               lines
15
                                                         54
                                                                  21 21 21
      orthographic
16
        specify sa,sb
                                                         55
                                                               mappingName
                                                         56
17
          2.5 2.5
                                                                 box
18
      exit
                                                         57
                                                                exit
                                                         58
19
      lines
                                                             exit
20
        15 15 5
                                                         59
21
      boundary conditions
                                                         60
                                                             generate an overlapping grid
22
                                                         61
        0 0 0 0 1 0
                                                               box
23
                                                         62
                                                               north-pole
      share
24
                                                         63
        0 0 0 0 1 0
                                                                south-pole
25
      mappingName
                                                         64
                                                               done
26
        north-pole
                                                         65
                                                               change parameters
27
                                                         66
    exit
                                                                  interpolation type
28
                                                         67
                                                                     explicit for all grids
29
    ^{\star} now make a mapping for the south pole
                                                         68
                                                                  ghost points
30
                                                         69
                                                                    all
31
                                                         70
    reparameterize
                                                                    2 2 2 2 2 2
32
                                                         71
                                                                exit
      orthographic
33
        choose north or south pole
                                                         72
                                                               compute overlap
34
                                                         73
          -1
                                                             exit
35
        specify sa,sb
                                                         74
                                                             save an overlapping grid
                                                         75
36
          2.5 2.5
                                                             sib.hdf
37
      exit
                                                         76
                                                             sib
38
      lines
                                                         77
                                                              exit
39
        15 15 5
```

The resulting grid is shown in figure 8. ture/sampleGrids/sibCC.cmd.

The cell-centered version can be made with Over-

Figure 8: An overlapping grid for a sphere in a box. The sphere is covered with two patches.

Figure 9: An overlapping grid for a sphere in a box. The interpolation points are also shown.

4.13 Sphere in a tube

Here is a command file to create a sphere in a cylindrical tube. The sphere is covered with two orthographic patches, one for the north-pole and one for the south-pole. The sphere is contained in a tube that is represented as a cylinderical annulus together with a rectangular box that forms the core of the cylinder. (file Overture/sampleGrids/sphereInATube.cmd)

```
1
                                                          52
                                                                   * orient the cylinder so y-axis is axial direction
 2
    * command file to create a sphere in cylindrical
                                                         1533be
                                                                   orientation
 3
                                                          54
                                                                     2 0 1
 4
                                                          55
                                                                   bounds on the radial variable
                                                          56
    create mappings
                                                                     .3 .8
                                                          57
 6
    * first make a sphere
                                                                   bounds on the axial variable
 7
                                                          58
    Sphere
                                                                     -1. 1.
 8
                                                          59
9
                                                          60
                                                                     55 21 9
10
    * now make a mapping for the north pole
                                                          61
                                                                   boundary conditions
                                                          62
11
                                                                     -1 -1 2 3 0 4
12
                                                          63
    reparameterize
                                                                   share
13
                                                          64
                                                                     0 0 2 3 0 0
      orthographic
14
        specify sa,sb
                                                          65
                                                                exit
15
                                                              * core of the main cylinder
           2.5 2.5
                                                          66
                                                          67
16
      exit
                                                                Box
17
      lines
                                                          68
                                                                   mappingName
                                                          69
18
        15 15 5
                                                                     cylinderCore
19
                                                          70
      boundary conditions
                                                                   specify corners
        0 0 0 0 1 0
20
                                                          71
                                                                   -.5 -1. -.5 .5 1. .5
21
                                                          72
      share
                                                                   lines
22
       0 0 0 0 1 0
                                                          73
                                                                     19 21 19
23
                                                          74
      mappingName
                                                                   boundary conditions
24
                                                          75
                                                                    0 0 2 3 0 0
        north-pole
25
    exit
                                                          76
                                                                   share
26
                                                          77
                                                                     0 0 2 3 0 0
27
    * now make a mapping for the south pole
                                                          78
                                                                 exit
28
                                                          79
                                                                  pause
29
                                                          80
    reparameterize
30
                                                          81
      orthographic
                                                              exit
31
                                                          82
        choose north or south pole
                                                              generate an overlapping grid
32
                                                          83
                                                                cylinderCore
33
        specify sa,sb
                                                          84
                                                                 cylinder
34
                                                          85
           2.5 2.5
                                                                north-pole
35
                                                          86
      exit
                                                                 south-pole
36
                                                          87
      lines
                                                                done
37
        15 15 5
                                                          88
                                                                 change parameters
38
                                                          89
      boundary conditions
                                                                   ghost points
39
        0 0 0 0 1 0
                                                          90
                                                                     all
40
                                                          91
      share
                                                                     2 2 2 2 2 2
41
                                                          92
        0 0 0 0 1 0
                                                                 exit
                                                          93
42
      mappingName
                                                                  * display intermediate
43
                                                          94
        south-pole
                                                                 compute overlap
                                                          95
44
                                                                 * continue
45
                                                          96
                                                                * pause
    * Here is the cylinder
46
                                                          97
                                                              exit
                                                          98
47
                                                              save an overlapping grid
48
       * main cylinder
                                                              sphereInATube.hdf
49
                                                         100
                                                              sit
      Cylinder
50
                                                         101
        mappingName
                                                              exit
51
           cylinder
```

The resulting grid is shown in figure 10.

Figure 10: An overlapping grid for a sphere in a cylindrical tube

4.14 Intersecting pipes

Here is a command file to create a grid for two intersecting pipes. Each pipe is made from a cylindrical annulus with a rectangular grid for the core. The pipes intersect using the poor man's intersection method with non-conforming grids. (A more refined intersection would use a fillet). The key point here is that the boundaries must not cut holes and so this feature is turned off. (file Overture/sampleGrids/pipes.cmd)

```
-1 -1 0 1 0 2
    * Make an overlapping grid for two intersecting p^{t}_{t}des
2
                                                                   share
3
                                                          52
                                                                         0 0 3 0 0
          cpu=2s (ov15 sun-ultra optimized)
                                                                     0
4
                                                          53
                                                                   mappingName
5
                                                          54
    create mappings
                                                                     branchPipe
6
    * Here is the main pipe
                                                          55
                                                                   exit
                                                               \mbox{\scriptsize \star} Here is the core of the branch pipe
7
                                                          56
      Cylinder
8
                                                          57
        orientation
                                                                 Box
9
           1 2 0
                                                          58
                                                                   specify corners
10
                                                          59
                                                                     -.25 .25 -.25 .25 1.25 .25
        bounds on the radial variable
11
          .25 .5
                                                          60
                                                                   lines
                                                          61
12
        bounds on the axial variable
                                                                     9 15 9
13
                                                          62
                                                                   boundary conditions
          -1.5 1.
14
        mappingName
                                                          63
                                                                     0 0 0 1 0 0
15
                                                          64
          mainPipe
                                                                   share
                                                          65
                                                                     0 0 0 3 0 0
16
        lines
17
           25 21 7
                                                          66
                                                                   mappingName
18
        boundary conditions
                                                          67
                                                                     branchCore
19
           -1 -1 1 1 0 2
                                                          68
                                                                   exit
20
                                                          69
        share
                                                                 exit.
21
           0 0 1 2 0 0
                                                          70
                                                               generate an overlapping grid
22
                                                          71
        exit
                                                                 branchCore
23
    * Here is the core of the main pipe
                                                          72
                                                                 branchPipe
24
    * note: there is trouble if corner of core just
                                                          73
                                                                 mainCore
25
    * sticks outside the main pipe -- hole cutter
                                                          74
                                                                 mainPipe
26
    * misses. (happens with core half width= .3)
                                                          75
                                                                 done
27
                                                          76
                                                                 change parameters
28
        specify corners
                                                          77
                                                                   prevent hole cutting
29
                                                          78
           -1.5 -.25 -.25 1. .25 .25
                                                                     all
                                                          79
        lines
                                                                     all
31
                                                          80
           21 9 9
                                                                   done
32
        boundary conditions
                                                          81
                                                                   allow hole cutting
33
          1 1 0 0 0 0
                                                          82
                                                                     branchPipe
34
                                                          83
        mappingName
                                                                       branchCore
35
          mainCore
                                                          84
                                                                     mainCore
36
        share
                                                          85
                                                                       mainPipe
37
          1 2 0 0 0 0
                                                          86
                                                                   done
38
                                                          87
                                                                   ghost points
39
    * Here is the branch pipe
                                                          88
                                                                     all
40
      Cylinder
                                                          89
                                                                     2 2 2 2 2 2
41
                                                          90
        orientation
                                                                 exit
                                                          91
42
          2 0 1
                                                                 * pause
                                                          92
43
        bounds on the radial variable
                                                                 compute overlap
44
                                                          93
          .2 .4
                                                               exit
45
        bounds on the axial variable
                                                               save an overlapping grid
                                                          95
46
           .25 1.25
                                                               pipes.hdf
47
                                                          96
        lines
                                                               pipes
48
                                                          97
           23 11 7
                       21 11 7
                                                               exit
        boundary conditions
```

The resulting grid is shown in figure 11.

compute overlap

Figure 11: An overlapping grid for two intersecting pipes

4.15 Body Of Revolution

Here is a command file to create a grid for a body of revolution. The body of revolution is created by revolving a twodimensional grid about a given line. The two dimensional grid in this case is created with the SmoothedPolygon Mapping. The body of revolution has a spherical polar singularity at both ends. We generate a new Mapping to cover each singularity. We reparameterize the ends using an orthographic transformation. (file Overture/sampleGrids/revolve.cmd)

```
1
                                                          55
                                                                   lines
 2
    * Create a cylindrical body of revolution
                                                          56
                                                                     15 15 5
 3
                                                          57
    * from a Smoothed Polygon
                                                                   orthographic
          cpu=48s (ov15 sun-ultra optimized)
                                                          58
                                                                     specify sa,sb
                                                          59
 5
    create mappings
                                                                       .5 .5
 6
      SmoothedPolygon
                                                          60
                                                                   exit
 7
        vertices
                                                          61
                                                                   boundary conditions
 8
                                                          62
         7
                                                                     0 0 0 0 1 0
9
                                                          63
         -1. 0.
                                                                   share
10
                                                          64
                                                                     0 0 0 0 1 0
        -1. .25
11
         -.8 .5
                                                          65
                                                                 exit
12
        0. .5
                                                          66
                                                                   patch on back singularity
13
                                                          67
         .8 .5
                                                                 reparameterize
14
        1. .25
                                                          68
                                                                   mappingName
15
        1. 0.
                                                          69
                                                                     back
                                                          70
16
        n-dist
                                                                   lines
17
        fixed normal distance
                                                          71
                                                                     15 15 7
18
                                                          72
        .1
                                                                   orthographic
19
        n-dist
                                                          73
                                                                     choose north or south pole
                                                          74
20
        fixed normal distance
                                                                       -1
21
        . 4
                                                          75
                                                                     specify sa,sb
22
        corners
                                                          76
                                                                       .5 .5
23
        specify positions of corners
                                                          77
                                                                   exit
24
                                                          78
                                                                   boundary conditions
         -1.0.
25
        1. 0
                                                          79
                                                                     0 0 0 0 1 0
26
                                                          80
         -1.4 0.
                                                                   share
27
                                                          81
                                                                     0 0 0 0 1 0
        1.4 0
28
                                                          82
        t-stretch
                                                                 exit
29
        0 5
                                                          83
30
        .15 10
                                                          84
                                                                Here is the box
31
         .15 10
                                                          85
32
                                                          86
        0 10
                                                                 Box
33
                                                          87
                                                                   specify corners
         .15 10
34
         .15 10
                                                          88
                                                                     -2 -1 -1 2 1 1
35
        0 10
                                                          89
                                                                   lines
36
      exit
                                                          90
                                                                     61 31 31
37
                                                          91
    * making a body of revolution
                                                                   mappingName
38
       pause
                                                          92
                                                                     box
39
                                                          93
      body of revolution
                                                                   exit
                                                                 * pause
40
        tangent of line to revolve about
                                                          94
                                                          95
41
        1.00
                                                               exit
42
        mappingName
                                                          96
                                                               generate an overlapping grid
43
           cylinder
                                                          97
44
                                                          98
        lines
                                                                 cylinder
45
                                                          99
           55 25 7
                                                                 front
46
                                                         100
        boundary conditions
                                                                 back
47
           0 0 -1 -1 1 0
                                                         101
                                                                 done
48
         share
                                                         102
                                                                 compute overlap
49
                                                         103
           0 0 0 0 1 0
                                                               exit
50
                                                         104
      exit
51
                                                         105
    * patch on the front singularity
                                                               save an overlapping grid
52
      reparameterize
                                                         106
                                                               revolve.hdf
53
                                                         107
        mappingName
                                                               revolve
54
                                                         108
           front
                                                               exit
```

The resulting grid is shown in figure 12.

Figure 12: An overlapping grid for a body of revolution. The body is generated by revolving a two-dimensional smoothed-polygon mapping. Orthographic patches are used to cover the singularities at the ends of the body.

4.16 3D valve

Here is a command file to create a grid for a three dimensional valve. The cross-section of this geometry is similar to the two-dimensional valve shown earlier. (file Overture/sampleGrids/valve3d.cmd)

```
67
                                                                      .15
 2
    * Make a 3d valve
                                                          68
                                                                   lines
3
                                                          69
                                                                     65 17
 4
           cpu=78s (ov15 sun-ultra optimized)
                                                          70
                                                                    sharpness
 5
                                                          71
                                                                      30
    create mappings
 6
       * main cylinder
                                                          72
                                                                      30
 7
                                                          73
      Cylinder
                                                                      30
 8
        mappingName
                                                                      30
9
                                                          75
           outerCylinder
                                                                   boundary conditions
10
         * orient the cylinder so y-axis is axial dire\overline{\partial}6ion
                                                                     0 0 1 0
11
                                                          77
        orientation
                                                                 exit
                                                          78
12
           2 0 1
                                                               * Make the valve as a body of revolution
13
        bounds on the radial variable
                                                          79
                                                                 body of revolution
14
           .4 1.
                                                          80
                                                                   mappingName
15
                                                          81
        bounds on the axial variable
                                                                   valve
16
                                                          82
                                                                   choose a point on the line to revolve about
17
        lines
                                                          83
                                                                     0.1.0.
18
           55 11 9
                                                          84
                                                                   lines
19
                                                          85
        boundary conditions
                                                                      41 11 35
20
           -1 -1 0 3 0 2
                                                          86
                                                                   boundary conditions
21
                                                          87
         share
                                                                     0 0 2 0 -1 -1
22
           0 0 0 1 0 2
                                                          88
                                                                   share
23
                                                          89
                                                                     0 0 3 0 0 0
      exit
24
    * core of the main cylinder
                                                          90
                                                                 exit
25
                                                          91
                                                               * 2D cross section for the stopper
      Box
26
                                                          92
        mappingName
                                                                 SmoothedPolygon
27
                                                          93
           cvlinderCore
                                                                   mappingName
28
                                                          94
        set corners
                                                                     stopperCrossSection
29
                                                          95
         -.5 .5 0. .5 -.5 .5
                                                                   vertices
30
                                                          96
        lines
                                                                      4
                                                          97
31
           19 17 19
                                                                      .65 -.5
32
        boundary conditions
                                                          98
                                                                     .65 -.3
                                                          99
33
           0 0 1 2 0 0
                                                                     .85 -.1
34
                                                         100
         share
                                                                     1. -.1
35
           0 0 3 1 0 0
                                                         101
                                                                   n-dist
36
                                                         102
       exit
                                                                      fixed normal distance
37
    * valve stem
                                                         103
                                                                      .15
38
                                                         104
      Cylinder
                                                                 exit
39
                                                               * stopper
                                                         105
        mappingName
40
                                                         106
                                                                 body of revolution
           valveStem
41
         * orient the cylinder so y-axis uis axial \dim \mathcal{B}tion
                                                                   mappingName
42
        orientation
                                                                     stopper
43
                                                         109
           2 0 1
                                                                   choose a point on the line to revolve about
44
                                                         110
        bounds on the radial variable
                                                                      0.1.0.
45
                                                         111
                                                                   boundary conditions
           .2 .6
46
                                                         112
        bounds on the axial variable
                                                                     1 1 2 0 -1 -1
47
                                                         113
           -.5 -.2
                                                                    share
48
        lines
                                                         114
                                                                     4 2 0 0 0 0
49
           41 9 9
                                                         115
                                                                   lines
50
        boundary conditions
                                                         116
                                                                      35 11 41
51
                                                         117
          -1 -1 3 2 2 0
                                                                 exit
52
                                                         118
                                                                 view mappings
         share
53
           0 0 4 3 0 0
                                                         119
                                                                   outerCylinder
54
         exit
                                                         120
                                                                   cylinderCore
55
    * Make a 2d cross-section of the valve
                                                         121
                                                                   valveStem
56
      SmoothedPolygon
                                                         122
                                                                   valve
57
                                                         123
        mappingName
                                                                   stopper
58
           valveCrossSection
                                                         124
                                                                 exit
59
                                                         125
        vertices
                                                               exit
60
           4
                                                         126
61
           .4 0.
                                                         127
                                                               generate an overlapping grid
62
          .85 0.
                                                         128
                                                                   cylinderCore
63
           .65 -.2
                                                         129
                                                                   outerCvlinder
64
           .4 -.2
                                                         130
                                                                   stopper
65
                                                         131
        n-dist
                                                                   valve
66
         fixed normal distance
                                                         132
                                                                   valveStem
```

133	done	141	exit
134	change parameters	142	save an overlapping grid
135	ghost points	143	valve3d.hdf
136	all	144	valve3d
137	2 2 2 2 2 2	145	exit
138	exit	146	
139	* pause	147	
140	compute overlap		

The resulting grid is shown in figure 13.

Figure 13: An overlapping grid for a three-dimensional valve.

4.17 Adding new grids to an existing overlapping grid.

New with version 18 This example shows how to start from an existing overlapping grid and add new grids. In this example we begin by building Mappings for two new grids. From the "generate an overlapping grid" menu we read in an existing overlapping grid and then specify the additional mappings. Ogen uses an optimized algorithm to compute the new overlapping grid. If for some reason this algorithm fails you can always choose "reset grid" followed by "compute overlap" to rebuild the grid from scratch.

```
16
                                                                   boundary conditions
2
                                                          17
                                                                     0 0 0 0
      add mappings to an existing overlapping grid
3
                                                          18
                                                                   set corners
4
                                                          19
                                                                     -1.5 -.5 -1.5 -.5
    create mappings
5
                                                          20
                                                                   mappingName
                                                          21
6
      annulus
                                                                    refine
7
                                                          22
                                                                   exit.
      centre
8
                                                          23
        1. 1.
9
                                                          24
      boundary conditions
                                                                 exit this menu
10
                                                          25
         -1 -1 1 0
                                                                 generate an overlapping grid
                                                          26
11
      mappingName
                                                                   read in an old grid
                                                          27
12
        annulus2
                                                                     cic
                                                          28
13
                                                                   annulus2
      exit
14
                                                          29
                                                                   refine
15
      rectangle
                                                          30
```

The resulting grid is shown in figure 14.

Figure 14: Ogen can be used to incrementally add new grids to an existing overlapping grid. Left: The initial overlapping grid. Right: overlapping grid after adding two new component grids

4.18 Incrementally adding grids to an overlapping grid.

New with version 18 This example shows how to incrementally add new grids to an overlapping grid. As new grids are added the overlapping grid can be re-computed to make sure that a valid grid exists. This can be a useful approach for building a large complicated grid since any problems will be isolated to the component grid that may have caused an invalid grid to result.

```
create mappings
                                                                   mappingName
                                                          45
 2
      rectangle
                                                                     annulus3
 3
                                                          46
        lines
                                                                   exit
                                                          47
 4
           41 41
 5
                                                          48
        mappingName
                                                                annulus
                                                          49
 6
           backGround
                                                                   inner and outer radii
7
         exit
                                                          50
                                                                     .1 .2
 8
                                                          51
                                                                   lines
9
                                                          52
                                                                     21 5
      annulus
10
        inner and outer radii
                                                          53
                                                                   centre for annulus
                                                          54
11
           .1 .2
                                                                     .7 .65
12
        lines
                                                          55
                                                                   boundary conditions
                                                          56
13
           21 5
                                                                    -1 -1 1 0
        centre for annulus
14
                                                          57
                                                                   mappingName
15
                                                          58
           .25 .25
                                                                    annulus4
                                                          59
16
        boundary conditions
                                                                   exit
17
                                                          60
         -1 -1 1 0
                                                                 exit this menu
18
         mappingName
                                                          61
                                                                 generate an overlapping grid
19
                                                          62
           annulus1
                                                                   backGround
20
                                                          63
         exit
                                                                   done choosing mappings
21
                                                          64
                                                                   compute overlap
22
                                                          65
      annulus
                                                                   pause
23
        inner and outer radii
                                                          66
                                                                   add grids
24
                                                          67
           .1 .2
                                                                   annulus1
25
        lines
                                                          68
                                                                   done choosing mappings
26
                                                          69
           21 5
                                                                   compute overlap
27
         centre for annulus
                                                          70
                                                                   pause
28
                                                          71
           .6 .35
                                                                   add grids
        boundary conditions
                                                          72
                                                                   annulus2
30
                                                          73
          -1 -1 1 0
                                                                   done choosing mappings
31
                                                          74
        mappingName
                                                                   compute overlap
32
                                                          75
           annulus2
                                                                   pause
                                                          76
33
                                                                   add grids
         exit
34
                                                          77
                                                                   annulus3
35
                                                          78
      annulus
                                                                   done choosing mappings
36
                                                          79
        inner and outer radii
                                                                   compute overlap
37
                                                          80
           .1 .2
                                                                   pause
38
                                                          81
        lines
                                                                   add grids
39
           21 5
                                                          82
                                                                   annulus4
40
         centre for annulus
                                                          83
                                                                   done choosing mappings
41
           .35 .65
                                                          84
                                                                   compute overlap
                                                          85
42
         boundary conditions
43
          -1 -1 1 0
```

The resulting grids at various stages are shown in figure 15.

Figure 15: Ogen can be used to incrementally add new grids.

4.19 Other sample command files and grids

The Overture/sampleGrids directory contains a number of other command files for creating grids. We list these here with a brief explanation.

cilc.cmd: Two dimensional cylinder in a long box. Used for computing the flow around a cylinder.

ellipsoid.cmd: Create a grid for a three-dimensional ellipsoid in a box. See also ellipsoidCC.cmd for the cell-centered version.

singularSphere.cmd: Build a grid for a sphere in a box where the singularities on the sphere are not removed. A PDE solver must know how to deal with this special type of grid.

tse.cmd: Build a grid for a model two-stroke engine.

mastSail2d.cmd: Make a grid for a sail attached to a mast.

building3.cmd: Three dimensional grids for some buildings.

Figure 16: A fillet grid is used to join two cylinders, filletTwoCyl.cmd.

Figure 17: A JoinMapping is used to join two cylinders, <code>joinTwoCyl.cmd</code>. To create the deformed cylinder the JoinMapping first computes the curves of intersection between two intersecting cylinders. Four TFIMappings are then generated to represent each face of the deformed cylinder and finally another TFIMapping is used to blend these four surface TFIMappings.

Figure 18: An overlapping grid for a submarine created with sub.cmd. The submarine hull is defined as a body of revolution from a spline curve. The sail and fins are created initially with the CrossSectionMapping. The JoinMapping is used to join these appendages to the submarine body.

Figure 19: An overlapping grid for valve, port and cylinder created with valvePort.cmd. The JoinMapping is used to create the grid that joins the valve-stem to the port surface.

Figure 20: A mast is attached to a sail. The inner boundary curves are defined from splines under tension while the component grids are generated with hyperbolic grid generation mastSail2d.cmd

.

Figure 21: The DepthMapping (see bottom figure) is used to give a vertical dimension to mappings defined in the plane, depth.cmd. In this case a separate TFI mapping, top left, defines the vertical height function Both an annulus and a square (top right) are given a depth.

Figure 22: Grids for two disjoint regions that match along a circle, innerOuter.cmd

Figure 23: Grid for a 3d triangular sail. The SweepMapping is used to generate a grid around the edge of the sail, tri-Sail.cmd

Figure 24: CAD surface (left) and a volume mesh (right) generated with Overture Mappings and Ogen.

Figure 25: Grid for the core of a rocket, showing the fuel-grain star-pattern. Rocket shape was created with the cross-section mapping and curves defined by the RocketMapping class. Thanks to Nathan Crane for building this grid.

Figure 26: Grid for some buildings built with building3.cmd

5 Mixed physical-interpolation boundaries, making a c-grid, h-grid or blockblock grid

To make a 'c-grid' as in figure (27) or an 'h-grid' as in figure (28) or the two block grid of figure (29), one should use the 'mixed boundary' option from the change parameters menu. A mixed boundary is a physical boundary where parts of the boundary can interpolate from another (or the same) grid. Actually it is either the boundary points or the ghost points on parts of the boundary that interpolate from another grid. When solving a PDE boundary value problem, the boundary points adjacent to ghost points that interpolate will be 'interior points' where the PDE should be applied, rather than the boundary condition. A mixed boundary on a MappedGrid g will have g.boundaryCondition(side,axis) > 0 and g.boundary-Flag(side,axis) ==MappedGrid::mixedPhysicalInterpolationBoundary.

There are two ways to determine which points on a mixed boundary should be interpolated

1. **Automatic**: With this option the program will attempt to find all the valid interpolation points. For the automatic determination of the mixed boundary interpolation points you can specify the tolerance for matching in two possible ways:

r matching tolerance: boundaries match if points are this close in unit square space.

x matching tolerance: boundaries match if points are this close in x space

The boundaries will be deemd to match if either one of the above two matching conditions holds.

2. **Manual**: with this option one must explicitly specify a set of points on the boundary that should be interpolated from another grid. One also indicates whether to interpolate boundary points or ghost points. If there are multiple disjoint regions to interpolate, each one should be specified separately. Even when points are specified in this **manual** case the program will still check to see if the points can be interpolated in a valid manner (and only interpolate those valid ones) using the **r matching tolerance** described above.

5.1 Automatic mixed-boundary interpolation

It is recommended when making a c-grid or an h-grid to have the matching parts of the boundaries actually overlap by an amount greater than or equal to zero (as shown in the examples).

The c-grid was generated with the command file Overture/sampleGrids/cgrid.cmd. A c-grid has a special topology where parts of the boundary of the c-grid actually become interior points with a periodic like boundary condition. This is implemented in Ogen by the 'mixed boundary' option. Along the c-grid 'branch cut', ghost point values interpolate from the opposite side of the c-grid.

Note that the c-grid boundary was made with a spline that wiggles a little bit along the branch cut. To ensure that the branch cut would be properly found, the lower part of the cut was raised by a small amount so that it would overlap the upper part of the grid (and vice versa to be symmetric). One can also specify a matching tolerance to take care of this problem, but it is more robust to use this trick of overlapping the branch cut a little bit. A matching tolerance was actually specified here, to be safe, but a message printed from ogen indicated that it was not needed. The h-grid was generated with the command file Overture/sampleGrids/hgrid.cmd. An h-grid has a special topology where parts of the boundary of the h-grid actually become interior points that match up to a second grid. This is implemented in Ogen by the 'mixed boundary' option. Along the h-grid 'branch cut', ghost point values interpolate from the other grid.

Note that the h-grid boundaries were made with splines that wiggle a little bit along the branch cuts (matching portions). To ensure that the branch cuts would be properly found, the lower part of the cut was raised by a small amount so that it would overlap the upper part of the grid (and vice versa to be symmetric). One can also specify a matching tolerance to take care of this problem, but it is more robust to use this trick of overlapping the branch cut a little bit. A matching tolerance was actually specified here, to be safe, but a message printed from ogen indicated that it was not needed.

The grid in figure (29) was generated with the command file Overture/sampleGrids/twoBlock.cmd.

5.2 Manual specification of mixed-boundary interpolation points

The command file cgrid.manual.cmd found in the Overture/sampleGrids directory shows how to manually create a c-grid by specifying which points should be interpolated. Note that we specify how points on the bottom of the c-grid branch cut interpolate from the top (along the ghost points) and how points on the top boundary interpolate from the bottom.

Figure 27: An overlapping grid using a c-grid makes use of the 'mixed boundary' option. A mixed-boundary is a boundary that is sometimes a physical boundary of the domain and sometimes an interpolation boundary.

5.3 Spitting a grid for interpolation of a grid to itself

When mixed boundary interpolation points are to be interpolated from the same grid (as in the case of a c-grid) ogen will actually temporarily split the grid into two pieces and determine how points on one piece interpolate from the other. This is necessary to prevent points from interpolating from themselves. By default, for a mixed boundary on (side,axis) the grid is split at the halfway point along "(axis+1) mod numberOfDimensions". If this is not correct you should explicitly specify where to split the grid using the specify split for self interpolation option. In this case you specify the axis that should be split and the index position of the split.

Figure 28: An overlapping grid using an h-grid makes use of the 'mixed boundary' option.

Figure 29: An overlapping grid for two blocks makes use of the 'mixed boundary' option.

6 Manual Hole Cutting and Phantom Hole Cutting

Ogen's hole cutting algorithm can make mistakes in some difficult cases such as when there are thin bodies. There is a *manual hole cutting* option that can be used in these difficult cases. Recall that when ogen cuts a hole with the boundary of grid g_0 it marks points on grid g_1 that lie near the boundary of g_0 . Points on g_1 are marked as interpolation or as hole points depending on whether they are inside or outside grid g_0 . The hole cutting algorithm can make a mistake if there is a grid g_2 that is very close to the boundary of g_0 but which should not be cut. Normally one can fix this problem by choosing the option *prevent hole cutting* of g_0 in g_2 ; however there are some cases when one must allow g_0 to cut some holes in a different portion of g_2 .

There are two steps to perform manual hole cutting:

- 1. Specify *phantom hole cutting* for grid g_0 onto grid g_1 . In this case only interpolation points on g_1 will be marked near the boundary of g_0 ; no hole points will be marked. These interpolation points should completely surround the hole region.
- 2. Manually cut a small hole in grid g_1 using the *manual hole cutting* option. The hole points that are specified must lie within the region of g_1 that should be removed. These hole points will act as a seed and will be swept out to fill the entire hole region. If the manually placed hole points are put in the wrong location then the hole points may expand throughout much of the grid, resulting in an invalid overlapping grid.

The command files cicManualHoleCut.cmd and sibManualHoleCut.cmd in the Overture/sampleGrids directory show examples of manually cutting holes.

7 TROUBLE SHOOTING 52

7 Trouble Shooting

In this section we give some hints on what to do when you are unable to build a grid.

When there is not enough overlap between the grids or you have made a mistake in specifying the boundary conditions or share flag values etc. the grid generator will fail to build a grid. When the algorithm fails the grid will be plotted and the offending points will be plotted with black marks. In addition information is printed to the screen and to a log file, ogen.log that may be helpful in tracking down what went wrong.

7.1 Failure of explicit interpolation

As an example, in figures (30) and (31) we show the result of trying to use explicit interpolation with the twodimensional valve grid. The algorithm fails to interpolate some points. These points are plotted with black marks.

Figure 30: An example showing the failure of the overlapping grid algorithm when there is insufficient overlap. We have tried to use explicit interpolation for the two-dimensional valve. The algorithm fails and plots the offending points with black marks.

When the algorithm fails there is information written to the file ogen.log. In this case the file contains information on each point that failed, as for example:

ERROR: unable to interpolate a point on grid=backGround, (i1,i2,i3)=(26,35,0), x=(5.200e-01,7.000e-01,0.000e+00)Try to interpolate from grid=stopper, r=(6.66e-01,5.96e-01,0.00e+00) 7 TROUBLE SHOOTING 53

Figure 31: A magnification of the failed grid shows that the points marked in black cannot be interpolated in an explicit manner using a 3×3 interpolation stencil.

```
mask =[1][1][1][-1][1][1][-1][-1][-1]: 0=hole, -1=interp., 1=discret.
...point is inside but explicit interpolation failed because stencil has an interpolation point in it.
Try to interpolate from grid=valve, r=(4.27e-01,4.84e-01,0.00e+00)
mask =[1][1][1][1][1][1][1][1][-1]: 0=hole, -1=interp., 1=discret.
...point is inside but explicit interpolation failed because stencil has an interpolation point in it.
```

This information indicates that a point could not be interpolated from either of two possible grids since the 9-point interpolation stencil (indicated by the 9 values of mask) contains some points that are themselves interpolation points (mask=-1). The values of r indicate the unit square coordinates in the grid we are trying to interpolate from.

Possible solutions to this problem are to use implicit interpolation or to increase the number of grid points on the grids or to decrease the interpolation width.

7 TROUBLE SHOOTING 54

7.2 Tips

Here are some tips for fixing a grid that fails:

check the log file: Check the ogen log file, **ogen.log** for informational messages that may help you understand what went wrong.

- **display intermediate results:** Turn on the option 'display intermediate results' in the ogen menu before choosing the option 'compute overlap'. This will plot the grid at intermediate stages in the overlapping grid algorithm.
- check the mappings: It is possible that the one of the Mapping's you have created has an error in it. There is a function available to check the properties of a Mapping. The Mapping can be checked either when you create the Mappings (use the 'check mapping' option) or from the grid generation menu. The checkMapping function will report any errors it finds. For example it will check the derivatives of the mapping by using finite differences. There is probably no reason to be concerned if the relative errors in the derivatives are small, less than 10-2 say.
- **Use implicit interpolation:** As mentioned in section (3.5) implicit (default) interpolation requires less overlap than explicit interpolation. If you are using explicit interpolation you could turn on implicit interpolation.
- check boundary conditions: Use the view mappings option under create mappings to view all the mappings. Check that all physical boundaries are shown as a positive value, that interpolation boundaries have a zero value and that periodic boundaries are black.
- **check for sufficient overlap:** Use the view mappings option under create mappings to view the mappings and check that the mappings appear to overlap sufficiently. If there is not sufficient overlap then **increase the number of grid points**.
- **check the share flag:** use the view mappings option under create mappings and plot the boundaries by their share flag value. Make sure that different grids that share the same boundary have the same share flag value (see section (3.2) for a description of share flags).
- shared side tolerance: even if your share flags are correct, the grid generator has a relative tolerance that it uses to allow for discrepancies between the boundary representations of two grids. This tolerance measures the distance in grid cells that the boundaries can differ by and still be assumed to be the same boundary. If your boundaries do not match closely then you may need to increase this value with the shared boundary tolerance option that is available from the change parameters menu.
- **turn off hole cutting:** As described in section (3.3), by default physical boundaries will cut holes in other nearby grids. You may need to disable the hole cutting as shown in the "inlet outlet" example, section (4.7).

8 Adding user defined Mapping's

Advanced users of Overture may want to write their own Mapping class, see the Mapping class documentation for how to do this. If you want to add a new type of Mapping to ogen then you should copy and change the driver program ogenDriver.C (found in Overture/in) and add in your new Mapping. Compile and load this program to make your own version of ogen.

The next listing shows ogenDriver.C. If the preprocessor macro ADD_USER_MAPPINGS is defined (for example, by adding the compile flag -DADD_USER_MAPPINGS then a user defined AirfoilMapping will be added.

```
// Here is the driver program for 'ogen' - the overlapping grid generator
3
   //
4
   //
        Usage: type
5
   //
            ogen
6
   //
       to run with graphics, or type
7
    //
            ogen noplot
8
        to run without graphics, or
    //
   //
           ogen file.cmd
10
   //
       to run ogen with graphics and read in a command file, or
11
    //
           ogen noplot file.cmd
12
    //
        to run ogen without graphics and read in a command file.
13
    //
14
   //
       By default user commands will be saved in the file "ogen.cmd"
15
   //
   //
16
       You can add to the driver any nonstandard Mapping's that you want to use.
17
    //
       See the example below where (if the macro ADD_USERMAPPINGS is defined) an AirfoilMapping
18
       is created and added to a list. The list is then passed to ogen. The Mapping
19
   //
       can be subsequently changed within ogen, if required.
20
   //
21
   //
       Thus, for example, your compile line should look something like:
22
    //
           CC -DADD_USERMAPPINGS .... ogenDriver.C
23
    //
24
    25
26
    #include "Overture.h"
27
    #include "MappingInformation.h"
28
    #include "PlotStuff.h"
29
30
    // Here are some user defined mappings
31
    #ifdef ADD_USER_MAPPINGS
32
    #include "AirfoilMapping.h"
33
    int addToMappingList(Mapping & map);
34
    #endif
35
36
    int ogen(MappingInformation & mappingInfo, GenericGraphicsInterface & ps, const aString & commandFileName );
37
38
39
    main(int argc, char *argv[])
40
41
     Overture::start(argc,argv);
42
      // Index::setBoundsCheck(off);
43
44
     aString commandFileName="";
45
     if( argc > 1 )
46
      { // look at arguments for "noplot" or some other name
47
       aString line;
48
       for( int i=1; i<argc; i++ )</pre>
49
50
         line=argv[i];
51
         if( line=="noplot" || line=="nopause" || line=="abortOnEnd" || line=="nodirect" )
52
           continue; // these commands are processed by getGraphicsInterface below
53
         else if( commandFileName=="" )
54
           commandFileName=line;
55
       }
56
57
      else
58
       cout << "Usage: 'ogen [noplot][nopause][abortOnEnd][file.cmd]' \n"</pre>
59
                         noplot: run without graphics \n"
60
                         nopause: do not pause \n"
61
                          abortOnEnd: abort if command file ends \n"
62
                          file.cmd: read this command file \n";
63
```

```
64
     // --- create user defined mappings ----
65
     MappingInformation mappingInfo;
66
   #ifdef ADD_USER_MAPPINGS
67
     AirfoilMapping airfoil;
68
     mappingInfo.mappingList.addElement(airfoil);
69
     \ensuremath{//} Do this so we can read the airfoil mapping from a data-base file
70
     addToMappingList(airfoil);
71
    #endif
72
73
74
     // Graphics interface:
75
     // Note: options "noplot", "nopause" and "abortOnEnd" are handled in the next call:
76
     77
78
     // By default start saving the command file called "ogen.cmd"
79
     aString logFile="ogen.cmd";
80
     ps.saveCommandFile(logFile);
81
     cout << "User commands are being saved in the file `" << (const char *)logFile << "'\n";
82
83
     // create more mappings and/or make an overlapping grid
84
     ogen( mappingInfo,ps,commandFileName);
85
86
     Overture::finish();
87
     return 0;
88
89
90
91
92
```

9 Overlapping Grid Generator: Ogen

The overlapping grid generation algorithm determines how the different component grids communicate with each other. The algorithm must also determine those parts of component grids that are removed from the computation because that part of the grid either lies underneath another grid of higher priority or else that part of the grid lies outside the domain.

9.1 Command descriptions

9.1.1 Interactive updateOverlap

int

updateOverlap(CompositeGrid & cg, MappingInformation & mapInfo)

Description: Here is a description of some of the commands that are available from the updateOverlap function of Ogen. This function is called when you choose "generate overlapping grid" from the ogen program.

compute overlap: this will compute the overlapping grid. As the grid is generated various information messages are printed out. Some of these messages may only make sense to the joker who wrote this code.

change parameters : make changes to parameters. See the next section for details.

display intermediate results: this will toggle a debugging mode. When this mode is on, and you choose compute overlap to generate the grid, then the overlapping grid will be plotted at various stages in its algorithm. The algorithm is described in section (9.2). The program will pause at the end of each stage of the algorithm and allow you to either continue or to change the plot as described next. Experienced users will be able to see when something goes wrong and hopefully detect the cause.

change the plot: this will cause the grid to be re-plotted. You will be in the grid plotter menu and you can make changes to the style of the plot (toggle grids on and off, plot interpolation points etc.). These changes will be retained when you exit back to the grid generator.

9.1.2 Non-interactive updateOverlap

int

updateOverlap(CompositeGrid & cg)

Description: Build a composite grid non-interactively using the component grids found in cg. This function might be called if one or more grids have changed.

Return value: 0=success, otherwise the number of errors encountered.

9.1.3 Moving Grid updateOverlap

int

updateOverlap(CompositeGrid & cg.

CompositeGrid & cgOld, const LogicalArray & hasMoved, const MovingGridOption & option =useOptimalAlgorithm)

Description: Determine an overlapping grid when one or more grids has moved. **NOTE:** If the number of grid points changes then you should use the useFullAlgorithm option.

cg (input): grid to update

cgOld (input): for grids that have not moved, share data with this CompositeGrid.

hasMoved (input): specify which grids have moved with hasMoved(grid)=TRUE

option (input): An option from one of:

```
enum MovingGridOption
{
   useOptimalAlgorithm=0,
   minimizeOverlap=1,
   useFullAlgorithm
};
```

The ${\tt useOptimalAlgorithm}$ may result in the overlap increasing as the grid is moved.

Return value: 0=succuss, otherwise the number of errors encountered.

hangeParametersInclude.tex

9.2 Algorithm

The algorithm used by Ogen is based upon the original CMPGRD algorithm[1] with some major changes to improve robustness. The basic improvement is that the new algorithm initially removes all grid points that lie inside "holes" in the grids. Once the holes have been cut the program can determine explicitly whether there is enough overlap to generate an overlapping grid and if there is not enough overlap the offending points can be shown.

The algorithm for computing the overlapping grid communication is perhaps most easily understood by reading the following description and also referring to the series of examples that follow.

Here are the basic steps in brief:

interpolate boundaries: First try to interpolate points on physical boundaries from points on physical boundaries of other grids.

Boundary points that interpolate from the interior of other grids are marked either as being an interiorBoundary—Point and an interpolationPoint (using a bitwise 'or' in the mask).

mark hole boundaries: For each physical boundary find points on other grids that are near to and inside or outside of the boundary. After this step the holes in the grid will be bounded by a boundary of holes points next to a boundary of interpolation points.

remove exterior points: Mark all remaining hole points. These points can be easily swept out since the hole cutting algorithm ensures that all holes are bounded by interpolation points.

classify (improper) interpolation boundary: The points on the stairstep boundaries and interpolation boundaries are collected into a list. We first try to interpolate these points from other grids using improper interpolation. A point is said to interpolate in an improper way from a grid if it simply lies within the grid. Since all the points in the list lie within in the domain they must interpolate from some other grid or else there is something wrong. See the section on trouble-shooting for examples when this step fails.

classify proper interpolation boundary: We now take the list of (improperly) interpolated points and sort them into one of the following categories:

proper interpolation: A point of a grid interapolates in a proper way from a second grid if the appropriate stencil of points exists on the second grid and consists of the correct types of points for the implicit or explicit interpolation.

discretization point: An interpolation point on a physical boundary may be used as a dicretization point.

At the successful completion of this step we should have a valid overlapping grid. There should be no fatal errors in performing the final steps.

interpolate discretization points: To reduce the amount of overlap we attempt to interpolate discretization points from grids of higher priority.

remove redundant interpolation points: Any interpolation points that are not needed are removed from the computation. Interpolation points that are needed but that can just as well be used as discretization points are turned into discretization points.

9.3 Hole cutting algorithm

After checking for interpolation points on boundaries, the next step in the overlapping grid algorithm is to cut holes. This is the most critical step in the algorithm. Each side of a grid that represents a physical boundary is used to cut holes in other grids that overlay the boundary.

Each face on grid g representing a physical boundary is used to cut holes in other grids. We also mark points that can interpolate from grid g. The goal is to build a barrier of hole points next to interpolation points that partitions the grid into two regions – one region that is inside the domain and one region that is outside the domain.

- We check for points, \mathbf{x}_g on the face of grid g that can interpolate from from another grid g_2 . These points \mathbf{i}_2 on g_2 are potential hole points.
- A potential hole point is not cut if it can interpolate from grid g, in this case the point is marked as an interpolation point.

- A potential hole point is NOT cut if the distance to the cutting surface is greater than $2\Delta x_2$ where Δx is a measure of the cell size on g_2 (currently the length of the diagonal of the cell \mathbf{i}_2). Thus in general there will be a layer of 1-3 points cut near the cutting surface.
- A potential hole point is NOT cut if the point i_2 already can interpolate from another grid g_3 AND the grid g_3 shares the same boundary with grid g_3 . This condition applies to a thin body and prevents points from being cut that are actually inside the domain on the opposite side of the thin body.

This section needs to be completed...

- 1. Invert the points \mathbf{x}_q on grid g_2 given coordinates \mathbf{r}_{g_2} .
- 2. Compute the holeMask mask array which indicates whether a point on the cutting face is inside of outside g_2

3. The idea now is to mark all points on g_2 that are near the cutting face.

9.4 Finding exterior points by ray tracing

*** Ray tracing is NO longer performed to remove holes points*** but it is used to generate embedded boundary grids (a future feature).

Exterior points are found by counting the number of times that a semi-infinite ray, starting from a point x and extending in the y-direction to $+\infty$, crosses the boundaries of the region. If the ray crosses the boundaries an even number of times then it is outside the domain.

If a ray crosses the region where two grids overlap then there will appear to be two points of crossing. We must eliminate one of these points of crossing or else we will obtain an incorrect result.

The ray casting algorithm will determine the intersection of the ray with the boundary surfaces represented as a triangulation of the discrete points.

We keep a list of the positions of intersection, \mathbf{x}_i , as well as the grid and grid point location of the intersection. Ideally we would only need to check whether two points of intersection from two different grids are close, $\|\mathbf{x}_i - \mathbf{x}_j\| < \epsilon$. It is not very easy, however, to determine an appropriate value for ϵ . If the ray crosses the boundary in a nearly normal direction then the distance $d = \|\mathbf{x}_i - \mathbf{x}_j\|$ will be of order the discrepency between the two discrete representations of the surface which can be estimated by ??

If, however, the ray crosses the boundary in a nearly tangential direction then the distance d could be as large as the grid spacing in the tangential direction.

There are further complications since the body may represent a very thin surface (such as a wing) and there may be points of intersection that are close together in physical space but actually on opposite sides of the thing body.

Thus to perform a robust check we do the following

- 1. Check that two intersecting points belong to two different grids, $g_1 \neq g_2$.
- 2. Check that the boundaries on the two grids are shared sides (meaning they belong to the same surface as specified in the grid generation by setting the share flag).

- 3. Check that the grid cells that contain the points of intersection have some vertices that are interpolation points (so that we know we are in a region of overlap) ???
- 4. check that the normals to the boundary at the points of intersection point in the same basic direction, $\mathbf{n}_1 \cdot \mathbf{n}_2 > 0$.
- 5. check that the distance $d = \|\mathbf{x}_i \mathbf{x}_j\|$ between the points satsifies

$$\begin{split} \alpha &= |(\mathbf{x}_2 - \mathbf{x}_1) \cdot \mathbf{n}| / ||(\mathbf{x}_2 - \mathbf{x}_1)|| \qquad 0 \leq \alpha \leq 1 \\ d_n &\equiv \text{ normal discrepency} \\ d_t &\equiv \text{ tangential discrepency} \\ d &\leq \alpha d_n + (1 - \alpha) d_t \end{split}$$

Figure 32: The points of intersection of a ray with a surface covered by two overlapping grids. If the ray is nearly tangent to the surface then the two points of intersection may not be very close together.

9.5 Adjusting grid points for the boundary mismatch problem

When the sides of two grids overlap on a boundary then there can be a problem interpolating one grid from the other if the grids do not match well enough. This problem is especially likely if the grids are formed by interpolating data points and the grid spacing is highly stretched in the normal direction.

Figure (33) shows two grids that share a boundary. If we suppose that the mapping for the grid is defined by linear interpolation between the grid points then it is clear that points on the boundary of grid A appear to be well outside or well inside the boundary of grid B, when actually the boundaries are meant to be the same.

This boundary mis-match causes two problems. The first problem, encountered by the grid generator, is that those boundary points (or even interior points for highly stretched grids) that appear to be outside the grid should actually be allowed to interpolate. The hole cutting algorithm will mark these points as being unusable and outside the grid. The second problem occurs in PDE solvers. Even if we allow the points to interpolate, the interpolation will not be very accurate and the solution can look bad.

Figure 33: Grid A and Grid B share a boundary but if the mappings are defined by linear interpolation, the grid point x_0 will appear to be outside grid B.

To fix both these problems we adjust the points on grid A so that the boundary points of grid A are shifted to lie exactly on the boundary of grid B. Other points on grid A are also shifted, but the amount of the shift decreases the further we are from the boundary. If the grid is highly stretched then the relative amount we shift the points, compared to the local grid spacing, decreases as we move away from the boundary. For example if the spacing near the boundary is 10^{-3} compared to the spacing away from the boundary layer then the amount we shift interior points will be on the order of 10^{-3} , a very small relative change. Note that this shift is only done when we are determining the location of A grid points in the parameter space of grid B (for interpolation). The actual grid points are not changed in the CompositeGrid created by the grid generator. Also note that points on grid A may be shifted one amount when interpolating from grid B, but could be shifted another amount if interpolating from a third grid C.

Referring to figure (34) the point \mathbf{x}_0 is shifted to the point \mathbf{x}_1 on the boundary. The point \mathbf{x}_2 is also shifted, but by a smaller amount, that depends on the distance from the boundary relative to the vector \mathbf{w}

$$\tilde{\mathbf{x}_2} \leftarrow \mathbf{x}_2 + (\mathbf{x}_1 - \mathbf{x}_0) [1 - \frac{(\mathbf{x}_2 - \mathbf{x}_0) \cdot \mathbf{w}}{\|\mathbf{w}\|^2}]$$

$$\equiv \mathbf{x}_2 + (\mathbf{x}_1 - \mathbf{x}_0) [1 - \frac{(\mathbf{x}_2 - \mathbf{x}_0) \cdot \mathbf{w}}{\|\mathbf{w}\|^2}]$$

$$\equiv \mathbf{S}(\mathbf{x}_1) \mathbf{x}_2$$

The opposite-boundary vector w is chosen to extend from the boundary to the grid points as some distance from the boundary. We use the grid line that is at least 1/3 of the distance (in index space) to the opposite side, but at least 10 lines (unless there are fewer than 10 lines). The vector should be far enough away so that points in the boundary layer are shifted to be inside the other grid, but close enough so that w is nearly parallel to the normal to the boundary.

The shift operator S will project the boundary points of grid A onto the boundary of grid B.

A complication occurs if the more than one side of grid A shares sides with the same grid B, as shown in figure (34). In this case we must determine shifts in multiple directions so that after these shifts the boundary points on grid A are shifted to lie on the boundary of grid B. We cannot simply apply the above algorithm for each side independently.

To fix this problem we sequentially apply the shift operations more than once in order to ensure that the grids points are projected onto all the shared boundaries. Let S_0 , S_1 and S_2 denote the shift mappings in each coordinate direction. In two dimensions, the operator

$$\tilde{\mathbf{x_2}} \leftarrow \mathbf{S_1}\mathbf{S_0}\mathbf{x}$$

will not work properly since after the application of S_1 the points on boundary 0 can be shifted off the boundary. However the operator

$$\tilde{\mathbf{x}_2} \leftarrow \mathbf{S}_0 \mathbf{S}_1 \mathbf{S}_0 \mathbf{x}$$

would work since the final S_0 operator will not change the points on boundary 1 (since the corner points of grid A have been projected to the corner points of grid B after the two steps S_1S_0x).

Rather than applying S_0 twice it is more efficient to define new operators to perform the projection in only two steps:

$$\tilde{\mathbf{x}_2} \leftarrow \widetilde{\mathbf{S}}_1 \widetilde{\mathbf{S}}_0 \mathbf{x}$$

We can do this

$$egin{aligned} \widetilde{\mathbf{S}}_0 &= \mathbf{S}_0(\mathbf{x}_1 + \mathbf{y}) \\ \mathbf{y} &= \mathbf{S}_0(\mathbf{x}_1)\mathbf{x}_1 \\ \widetilde{\mathbf{S}}_1 &= \mathbf{S}_1 \end{aligned}$$

In three-dimensions if we have three adjacent shared faces then

$$\begin{split} &\tilde{\mathbf{x}_2} \leftarrow \widetilde{\mathbf{S}}_2 \widetilde{\mathbf{S}}_1 \widetilde{\mathbf{S}}_0 \mathbf{x} \\ &\widetilde{\mathbf{S}}_0 = \mathbf{S}_0 \mathbf{S}_2 \mathbf{S}_1 \mathbf{S}_0 \\ &\widetilde{\mathbf{S}}_1 = \mathbf{S}_1 \\ &\widetilde{\mathbf{S}}_1 = \mathbf{S}_2 \end{split}$$

Figure 34: An overlapping grid testing the mismatch problem, created with mismatch.cmd. The refinement grid is artifically translated so that the two boundaries it shares with the base grid do not match. The figure on the right is a magnification of the lower left corner, before the overlap algorithm was applied.

9.6 Refinement Grids

Refinement grids can be added to a GridCollection or to a CompositeGrid. The component grids that exist in the original CompositeGridare known as **base grids**. These grids represent **refinement level 0**. Refinement grids are added on a particular base grid and belong to a particular level. Normally the refinement levels are **properly nested** so that all grids on refinement level l are contained in the grids on refinement level l-1.

A given refinement grid will have only one parent grid on refinement level 0, i.e. it will belong to only one base grid. A refinement grid on level l may have more than one parent grid on level l-1.

Normally a refinement grid will interpolate its ghost values from other refinement grids on the same level or from its parent grids. Points on the parent grid that lie underneath the refinement will interpolate from the refinement (also known as the child grid).

If refinement grids lie in a region where two base grids overlap, it is necessary to determine how the refinements interpolate from the grids they overlap that belong to a different base grid.

The updateRefinements function determines how refinement grids interpolate from other grids that they overlap. This function does not determine how a refinement grid interpolates from the grid it has refined.

If a refinement...

9.7 Improved Quality Interpolation

This is new* Version 16 or higher.

Normally one wants to avoid having a fine grid interpolate from a coarse grid or vice versa. Often this can be accomplished through the normal specification of a priority for each grid. Sometimes, however, using a single priority per grid is not sufficient.

Figure 35: The lower annulus (the highest priority grid) has points that interpolate from the fine boundary layer grid of the upper annulus. This interpolation will be inaccurate if the solution varies rapidly in the boundary layer, and the lower annulus will be unable to represent the boundary layer solution accurately. This problem cannot be fixed by simply changing the priorities of the grids.

Figure (35) shows a grid where the highest priority grid (the bottom annulus) interpolates from the fine boundary layer grid of the top annulus. By turning on the flag to improve the quality of interpolation the grid shown in figure (36) results.

We use a simple measure of the quality of the interpolation to be the relative size of the grid cells on the two grids involved.

$$quality of interpolation = \frac{cell \ size \ of \ the \ interpolation \ point}{cell \ size \ of \ the \ interpolee \ point}$$

The quality is bad (i.e. large) if the interpolee grid cells are smaller. This simple measure seems adequate for our purposes of preventing coarse grid points on higher priority grids from interpolating from lower priority grids.

The **algorithm** for removing poor quality points is

- 1. Follow the standard algorithm until all points have been interpolated but redundant points have not yet been removed.
- 2. Try to interpolate all points on the finest grid that can interpolate from a lower priority grid. (This is not done in the standard case).
- 3. Attempt to remove poor quality points from the *boundary* of the interpolation point region where a point interpolates from a lower priority grid. A point is removed if it is not needed for discretization and the quality measure is greater than a specified value (normally around 2). If a point is removed then also check the new *boundary* points that are now exposed.
- 4. After points have been removed we need to go back and update any other interpolation points that can no-longer interpolate (since they required some of the points that were deleted).

The algorithm is supposed to be guaranteed to give a valid grid provided a grid could be made without the improvement steps.

9.7.1 Note:

There is a more sophisticated way to measure the quality of interpolation. ***This measure is not used currently**.

Figure 36: With the 'improved quality' option turned on, the lower annulus no longer interpolates from the fine boundary layer of the upper annulus.

One way to measure the quality of the interpolation is defined as follows. We would like the cell at an interpolation point on grid A to be approximately the same size, shape and orientation as the cells on the interpolee grid B. The vector

$$\mathbf{d}_{i}^{A} = \frac{\partial \mathbf{x}^{A}}{\partial r_{i}} \Delta r_{i}^{A}$$

measures the grid cell spacing and orientation of the side of the cell along the axis r_i of grid A. This vector corresponds to a vector in the parameter space of grid B given by

$$\mathbf{r}_i^B = \left[\frac{\partial \mathbf{r}^B}{\partial \mathbf{x}}\right] \mathbf{d}_i^A$$

The length in grid cells of this vector \mathbf{r}_i^B is approximately

$$\left\| \begin{bmatrix} \frac{1}{\Delta r_1^B} & 0 & 0\\ 0 & \frac{1}{\Delta r_2^B} & 0\\ 0 & 0 & \frac{1}{\Delta r_3^B} \end{bmatrix} \mathbf{r}_i^B \right\|$$

where we have scaled each element by the appropriate grid spacing. This length should be near 1 for good quality (since the original vector \mathbf{d}_i^A has a length of one grid cell).

Thus to measure the quality of all sides on the original cell we can compute

$$p = \left\| \begin{bmatrix} \frac{1}{\Delta r_1^B} & 0 & 0\\ 0 & \frac{1}{\Delta r_2^B} & 0\\ 0 & 0 & \frac{1}{\Delta r_3^B} \end{bmatrix} \begin{bmatrix} \frac{\partial \mathbf{r}^B}{\partial \mathbf{x}} \end{bmatrix} \begin{bmatrix} \frac{\partial \mathbf{x}^A}{\partial \mathbf{r}} \end{bmatrix} \begin{bmatrix} \Delta r_1^A & 0 & 0\\ 0 & \Delta r_2^A & 0\\ 0 & 0 & \Delta r_3^A \end{bmatrix} \right\|$$

The interpolation will be defined to be of high quality if this norm is near 1. In particular we use the quality measure

$$q = \frac{1}{2}(p + \frac{1}{p})$$

where we prefer points with a smaller value for q.

10 Treatment of nearby boundaries and the boundaryDiscretisationWidth

** new with version 18**

Figure (37) shows the grid generated in the case when two boundaries are very near to one another. The boundaryDiscretisationWidth parameter, which is by default 3, indicates that any boundary point that is a discretisation point should have two interior neighbouring points so that a one-sided 3-point scheme could be applied on the boundary. To ensure this condition is satisfied extra points are allowed that normally would not be valid. The interpolation points that are outside the domain are "interpolated" from the nearest point on the boundary by pretending that the interpolation point has been moved to the boundary. This will only be first order accurate interpolation.

Figure 37: When two boundaries are nearby to one another the overlapping grid algorithm ensures that enough interior grid-points remain next to the boundary points to allow the boundary point to be discretised. While not very accurate this approach at least allows a grid to be built.

11 Adaptive Mesh Refinement

When refinement grids are added to an overlapping grid and a refinement grid overlaps an interpolation boundary, the Ogen function updateRefinement should be called. This function will cut holes in the refinement grids and determine how to interpolate points on the hole-boundary.

The order of preference for the interpolation of a point on the hole-boundary of a refinement grid is to

- 1. interpolate from another refinement at the same level and different base grid
- 2. interpolate from another refinement at a lower level and different base grid
- 3. interpolate from a refinement grid on the same base grid (this case should only be used as a backup and should normally not be needed).

11.1 The algorithm for updating refinement meshes added to an overlapping grid.

There are two main steps in the algorithm for adding refinement meshes to an overlapping grid.

- 1. Build a mask array for each refinement grid that indicates where holes are and which points should be interpolated.
- 2. For each interpolation point on the hole boundary, find which grid to interpolate from.

To be efficient, these steps are performed with a different procedure than the normal overlapping grid algorithm. The mask array is built entirely by looking at the mask array from the base grids. The interpolation points are determined by looking at the interpolation points on the base grids in order to determine the likely interpolee grids.

Figure 38: When refinement grids are added to an overlapping grid, the updateRefinement function should be called in order to compute a valid grid.

11.2 Example: Circle in a Channel

These figures show the circle in a channel grid at various stages in the overlap algorithm.

Grid after cutting holes. Physical boundaries are used to cut holes in nearby grids. The hole cutting algorithm will generate a barrier of hole points and interpolation points that bounds the entire hole region.

Grid after removing all exterior points. The exterior points are easily swept out after the hole boundary has been marked.

Grid after marking (improper) interpolation. These improper interpolation points need only lie inside another grid.

Grid after marking all (proper) interpolation. We have attempted to interpolate discretization points on each grid from grids of higher priority.

Finished grid after removing excess interpolation points.

11.3 Example: Valve

These figures show the grid for a valve at various stages in the overlap algorithm.

Grid after interpolation on boundaries.

Grid after cutting holes. Physical boundaries are used to cut holes in nearby grids. The hole cutting algorithm will generate a barrier of hole points and interpolation points that bounds the entire hole region.

Grid after removing all exterior points. The exterior points are easily swept out after the hole boundary has been marked.

Grid after marking (improper) interpolation. These improper interpolation points need only lie inside another grid.

After marking all interpolation

Grid after marking all (proper) interpolation.

After unmarkInterpolationPoints

Finished grid after removing excess interpolation points.

REFERENCES 77

References

[1] G. CHESSHIRE AND W. HENSHAW, Composite overlapping meshes for the solution of partial differential equations, J. Comp. Phys., 90 (1990), pp. 1–64.

- [2] W. HENSHAW, *Mappings for Overture, a description of the Mapping class and documentation for many useful Mappings*, Research Report LA-UR-96-3469, Los Alamos National Laboratory, 1996.
- [3] ——, *Plotstuff: A class for plotting stuff from Overture*, Research Report LA-UR-96-3893, Los Alamos National Laboratory, 1996.

Index

```
adaptive mesh refinement
     ogen, 69
airfoil, 21
body of revolution, 32
boundary condition, 5
     mixed boundary condition, 47
     physical boundary, 5
boundary mismatch, 62
boundaryDiscretisationWidth, 67
building, 46
c-grid, 47
command file, 8
cutting holes
     turning off, 6
grid generation, 1
h-grid, 47
hints, 52
hole cutting, 59
     algorithm, 59
     manual, 51
     phantom, 51
hybrid grid, 23
interpolation, 6
    explicit, 6
     implicit, 6
     improper, 59
     improved quality, 65
     proper, 59
     redundant, 59
     turning off, 6
mapping
     AirFoilMapping, 21
     transfinite interpolation, 21
orthographic, 26
overlapping grid algorithm, 59
phantom hole cutting, 51
refinement grids, 64
rocket, 46
share flag, 6
tips, 54
trouble shooting, 52
unstructured grid, 23
user defined mapping, 55
```